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Abstract

Concepts is one of the most awaited language constructs of the C++17 standard

and is going to simplify the work with templates significantly. The new language

feature introduces a way to describe syntactical requirements for template param-

eters and check template arguments during instantiation. Requirements on tem-

plate parameters are no longer only implied from their use in the template body.

This enables cleaner error messages during compilation and more self-explanatory

APIs. But, up to now there is only one working implementation of the current

Concepts proposal as part of the GCC C++ compiler and the support in IDEs is

non-existent.

During this term project, we have worked on the integration of the Concepts

proposal in the Eclipse CDT development environment. We have analyzed the

new language features and identified the required changes and extensions to both

parser and semantic analysis.

The resulting implementation includes complete support for the new syntax in-

troduced by the proposal. Furthermore, the binding resolution algorithm has been

extended such that all names used for constraining template arguments and defin-

ing concepts can be correctly resolved and checked for binding errors. This gives

basic support for the new language features and enables the further implementa-

tion of more advanced features like concept checks in the IDE, constraint-based

auto-completion and new refactoring tools.



Management Summary

This report describes the integration of Concepts, a new language feature for C++,

into Eclipse CDT.

C++ Concepts

Concepts is a long awaited language feature for C++ and is supposedly part of

the upcoming C++17 standard. The goal behind the Concepts proposal is to al-

low library designers to explicitly describe syntactical requirements for template

arguments as a part of the public API. This enables a more precise error reporting

when using template based libraries. It also reduces the required amount of docu-

mentation because Concepts are part of a formal and unambiguous description of

how templates can be used.

In contrast to earlier versions of the Concepts proposal, the current specification

describes a language feature that can be iteratively adopted to existing code. This

makes it also interesting for owners of big legacy projects to gradually migrate to

Concept based libraries.

Because the standardization of this feature is still in progress, tooling that sup-

ports the additional syntax and capabilities is currently almost non-existent.

Goals

Integrated development environments (IDE) like Eclipse CDT do currently not

support the new language features from the Concepts proposal. This makes using

Concepts in a modern IDE almost impossible. Because the IDE does not know

the additional language rules, it spuriously reports errors in the source code where

syntax related to Concepts are used.

The goal of this term project is to enable the use of Concepts in Eclipse CDT

and lay a foundation for additional tools that became possible through the new

language features. Thus, IDEs should be ready to support Concepts when they

finally become part of the C++ standard.
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Results

The resulting implementation supports the new syntax introduced by the Concepts

proposal. The IDE can successfully parse syntactically correct C++ code that uses

Concepts and creates an unambiguous internal representation (AST) for further

processing.

Figure 0.1.: A concept in CDT’s editor view with correct syntax coloring

Developers can now use Concepts and the IDE reports syntax errors in case of

incorrect use of the new language features. Furthermore, basic supportive features

are available. For example syntax coloring, jumping from concept references to

their definition and highlighting other occurrences of a selected concept name.

Beside this basic integration into Eclipse CDT, we’ve analyzed how this work

can be used to provide more advanced tools that support developers while working

with Concepts.
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1. Introduction

Concepts, as proposed for C++, are a relatively unique feature in the landscape

of programming languages. This is why we start this report with explaining why

they became necessary and how they will be implemented in C++ in chapter 2.

In the following chapter 3 we analyze the implications of Concepts on IDEs. At

one hand, we define what syntax checking stands for when applied to such a com-

plex language like C++ that has no clear borders between syntax and semantic.

At the other hand, we give an overview over how the support for Concepts could

be further extended with supportive tools like automated refactorings.

Chapter 4 then focuses on the existing parsing infrastructure of Eclipse CDT,

our target platform.

Based on this preliminary work, we give a detailed insight into the implementa-

tion in chapter 5. This includes descriptions of fundamental design decisions and

how we approached the more severe obstacles during the implementation. Chap-

ter 6 then shows how we ensured that our implementation is correct and meets

the specifications from the Concepts proposal.

Finally, chapter 7 concludes this project and gives an overview over the remain-

ing work necessary to fully support Concepts in Eclipse CDT.
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2. Introducing Concepts

In this chapter we want to give a brief overview over the motivations and ideas

behind the Concepts proposal and an insight in its language constructs.

2.1. Why Concepts?

One of the strengths of the template based approach to generic programming

in C++ is the fact that it does not require an explicitly specified interface on

template parameters. Instead of that, a template defines an implicit interface for

its parameters based on the syntactic elements that are applied on them. During

template instantiation, the compiler checks if the concrete arguments actually

implement those implied interfaces by replacing the placeholders by their concrete

types (or values in case of non-type templates) and then type check the substituted

code.

Listing 2.1: A simple function template with one type parameter T

template<typename T> T twice(T x){ return x + x; }

Given the function template in Listing 2.1 the template defines an implicit in-

terface that requires that the addition operator is defined on T and its return

type must be also T. This function is now applicable on every type fulfilling this

contract, e.g. twice(21) or twice("foo").

This example also demonstrates another property of C++ templates: Types

implicitly implement the interface required by a template as soon as the required

syntax is supported. Hence, the call twice(21) is valid code because the addi-

tion operator is defined on int without the need to explicitly denote that int is

intended to support this interface.

When we compare this to the way how genericity is achieved in languages that

mainly use subtyping for polymorphism (like Java or C#) we see that C++ tem-

plates definitely offer more flexibility. Listing 2.2 shows the implementation of a

similar generic function as in Listing 2.1 in Java. But in contrast to the C++

version we have to constrain the type parameter T to be an implementation of the

2



2.2. HISTORY AND SPECIFICATION

Addable interface. Otherwise, the compiler would object on the call to the add

method. This limits the usefulness of the twice method as it is only applicable

with types that are marked as implementations of Addable.

Listing 2.2: A generic method in Java with one type parameter

public static <T extends Addable> T twice(T x){ return x.add(x); }

But the greater flexibility of C++ templates comes with some downsides that

can be summarized in two points:

Late Error Detection

Because C++ compilers first substitute template arguments and then type

check the instantiated template, errors caused by invalid template arguments

are reported where the unsupported syntax is used and not right where the

user invoked the erroneous template instantiation. This often results in hard-

to-read compiler errors. Especially when the substitution failure occurred in

nested templates.

API Documentation and Readability

The signature of a template class or function does not include requirements

to its template parameters. Instead of that, API designers have to state these

requirements in documentation comments or separate documents which re-

quires discipline and leads to redundancy between code and documentation.

Both of these issues can be resolved by extending the language such that it

becomes possible to describe requirements on template parameters that are checked

during compile time. Hence, template arguments that do not satisfy all of the

required properties can be reported right where the developer passed the wrong

template argument which allows more precise error messages. Also the second issue

can be addressed because such requirements are available to library users and are

easily comprehensible for both developers and development tools like IDEs, linters

and compilers.

2.2. History and Specification

One of the earliest discussion on how template arguments can be constrained in

C++ can be found in “The Design and Evolution of C++” [Str94]. Stroustrup

states that constraints would improve readability and early error detection and

discusses several approaches to add this feature to the language.

3



CHAPTER 2. INTRODUCING CONCEPTS

From the C++98 standard [ISO98] on, concepts are used to describe syntactic

and semantic requirements to template parameters. These concepts are mainly

written in prose and describe the conventions to follow in order to work with

template functions of the standard libraries.

The first major attempt to finally include concepts into the C++ language was

part of the standardization of C++0x [ISO11]. In contrary to the current ver-

sion of the concept proposal, this version proposed a radical implementation of

concepts that made the iterative migration to constrained generic code almost im-

possible. Furthermore, it included the additional language constructs axioms and

concept maps. Axioms were used to describe semantic requirements in concepts

and concept maps to provide implementations of a concept for a certain type. Due

to various reasons the standardization committee finally decided that concepts

should not be included in C++0x [Str09].

Currently, there is some work in progress to include a simpler version of concepts

(formerly known as “Concepts Lite”) into the upcoming C++17 standard. The

working draft [Sut14b] is maintained by A. Sutton and is currently under contin-

uous revision. A less formalized discussion of the current concept proposal can be

found in [SSR13]. Please note that this document is not entirely up to date with

the current revision of the proposal but should still give a deeper insight into the

new language constructs.

The repository containing the most recent version of the concept proposal can

be found at [Sut15b]. Because there is a lot of ongoing work on the proposal at

the time of this term project, it is possible that some implementation details are

no longer up to date with the current specification.

2.3. Motivating Example

The STL header specifies various generic functions that are mainly useful to work

on containers, collections or - more general - on ranges of elements [ISO13]. One

example of such a function is all of which tests a condition on all elements of a

range of elements. The standard specifies that all of has a function signature as

specified in Listing 2.3,

Listing 2.3: A function of the standard library using concepts by convention

template <class InputIterator, class Predicate>

bool all_of(InputIterator first, InputIterator last, Predicate

pred);

4



2.3. MOTIVATING EXAMPLE

The name of both template parameters InputIterator and Predicate already

gives some hints on how potential arguments will be used and what requirements

on them are implied. A predicate, for example, is commonly known as a function

that takes at least one argument and returns true if the value belongs to a set

described by the predicate or false otherwise. Hence, despite the fact that the

template parameters are not formally specified, there are conventions that help

users working with template libraries.

In case of the standard library there are already precise descriptions of all tem-

plate parameters. E.g. for predicates, the standard states “The Predicate param-

eter is used whenever an algorithm expects a function object that, when applied

to the result of dereferencing the corresponding iterator, returns a value testable

as true[. . . ]”. Furthermore, there are also similar descriptions for InputIterator

and other concepts used in the standard library.

Ideally, we should be able to formally describe these syntactic requirements as

illustrated in Listing 2.4. This template signature uses the three types It, Pred

and Elem as template parameters and a special notation called requires clause to

constrain these types. The first part of the conjunction states that It and Elem

must provide the syntax described by the Input iterator concept and the second

part requires Pred and Elem to be a model of the Predicate concept.

Listing 2.4: A function of the standard library constrained by two formal concepts

template<typename It, typename Pred, typename Elem> requires

Input_iterator<It, Elem> && Predicate<Pred, Elem>

bool all_of(It first, It last, Pred pred);

These two concepts are listed in Listing 2.5. They describe the required syntax

and how their template arguments relate to each other. As we can see, syntactic

requirements in concepts are described by example. For instance, the requires

expression of the Predicate concept states that if there is a p of type Pred and

an e of type Elem, the expression p(e) must be valid and evaluate to a value of

type bool.

The Input iterator concepts uses similar examples with the variables a and

b of type Iter to state that the dereference operator, the pre-increment operator

and the inequality comparison must be available.

Listing 2.5: Two simplified concepts for Predicate and Input Iterator

template<typename Pred, typename Elem>

concept bool Predicate =

requires(Pred p, Elem e) {

5



CHAPTER 2. INTRODUCING CONCEPTS

{p(e)} -> bool;

};

template<typename Iter, typename Elem>

concept bool Input_iterator =

requires (Iter a, Iter b) {

{*a} -> Elem;

{++a} -> Iter;

{a != b} -> bool;

};

The advantage of describing requirements by example is that they do not restrict

how the syntax must be provided. Hence, in order to implement the Predicate

concept for a class C one can provide the overloaded application operator as a

member of C or as a static global function. This gives great flexibility as it is

possible to provide implementations of a concept for types not owned by oneself.

Finally, the constrained signature of all of provides detailed information about

the expected template arguments in an unambiguous and verifiable way.

2.4. Concept Definitions

A concept is either a function or variable template of type bool declared with the

new concept specifier. Additionally, every concept definition is implicitly declared

as a constexpr declaration but the constexpr specifier must not be used.

Listing 2.6: Two concepts defined as a variable and a function respectively

template<typename T> concept bool Any = true;

template<typename T> concept bool None(){

return false;

}

The first example definition in Listing 2.6 demonstrates how a concept can be

defined using a template variable (a variable concept). The resulting concept Any

accepts every type, or to put it the other way around: Every type is a model of

Any. The second example defines the contrary concept None as a function concept.

Because None always evaluates to false, there are exactly zero types that are a

model of None.

6



2.4. CONCEPT DEFINITIONS

Every concept has at least one template parameter that is not necessarily a type

parameter. For example the concept in Listing 2.7 restricts integers to be divisible

by two. Such concepts could be used to constrain sizes and limits of containers or

similar structures or to provide specializations for containers with a certain size.

Listing 2.7: A concept with a non-type template parameter

template<int I> concept bool Even = I % 2 == 0;

2.4.1. Constraint Expressions

The body of every concept definition must consist of exactly one constraint ex-

pression. A constraint expression is an expression of the form E; where E is a

constraint. The exact definition of a constraint is given in [Sut14b, 14.10] but can

be summarized in a heavily simplified form to: A constraint expression is a logical

expression of type bool that can be evaluated at compile time.

Furthermore, a constraint expression is only valid if it can be normalized to a

logical expression consisting of only atomic constraints and the logical and and

or operators. An atomic constraint is a single expression that evaluates to bool

without using implicit conversions.

2.4.2. Requires Expressions and Requirements

Requires expressions are a new language construct to describe syntactic require-

ments by example. They can only be used within a constraint expression.

A requires expression can introduce local parameters as “prototypes” to de-

scribe the required syntax. The requires expression in Listing 2.8 uses two local

parameters a and b of type T.

Listing 2.8: A concept using one requires expression with two local parameters

template<typename T> concept bool Numeric =

requires(T a, T b){

a++; // a simple requirement

typename T::result; // a type requirement

{a + b} noexcept -> T; // a compound requirement

requires Copyable<T>; // a nested requirement

};

7



CHAPTER 2. INTRODUCING CONCEPTS

The body of a requires expression contains at least one requirement separated by

semicolons. These requirements can use all symbols available from the surrounding

context like local parameters, template parameters or other visible declarations.

Listing 2.8 gives an example for each available type of requirement:

Simple Requirement

Asserts that the expression is valid.

Type Requirement

Asserts that the type stated exists.

Compound Requirement

A simple requirement with optional noexcept and return type requirements.

Nested Requirement

Asserts the nested requires clause.

The noexcept requirement asserts that the function enabling the according syn-

tax uses the noexcept specifier.

2.5. Constraining Templates

Besides the syntax for concepts definitions the proposal describes four different

notations to constrain template parameters.

2.5.1. Requires Clause

Requires clauses are the most expressive notation for constraining templates. In

fact, every constraint using one of the other notations can always be transformed

to an equivalent template definition with a requires clause.

A requires clause can be used after the closing angle bracket of every template

definition as shown in Listing 2.9 and consists of the requires keyword followed

by a constraint expression (see subsection 2.4.1).

Listing 2.9: A requires clause referring to the Number concept

template<typename T> requires Number<T>

T add(T a, T b);

8



2.5. CONSTRAINING TEMPLATES

During template instantiation, the compiler evaluates the according requires

clause and reports which constraint has been violated if the constraint expression

results in false.

Sometimes it may also be necessary to define constraints that refer to parameters

of a function template. In this case it is also possible to additionally use a requires

clause after the function signature as shown in Listing 2.10.

Listing 2.10: A constrained function

template<typename T>

auto add(T a, T b) -> decltype(a+b) requires Number<decltype(a+b)>;

2.5.2. Constrained Parameters

The shortest notation for writing simple constraints on templates are constrained

parameters. A constrained parameter is a parameter declaration that uses a con-

cept name instead of a type specifier. The use of a concept name instead of a

type specifier is also called a constrained type specifier in the proposal. As we can

see in Listing 2.11 this notation obscures the fact that printNum() is actually a

template.

Listing 2.11: A constrained parameter and the equivalent template declaration us-

ing a requires clause

void printNum(Number a);

// ...is equivalent to...

template<typename T> requires Number<T>

void printNum(T a);

Constrained type specifiers may also have template arguments if the referred con-

cept has more than one template parameter. Hence, using Input iterator<int>

as a constrained type specifier is equivalent to using a template parameter T and

the requires clause requires Input iterator<T, int>.

Additionally, constrained type specifiers can also appear as template arguments

within parameter declarations. This is illustrated in Listing 2.12

Listing 2.12: A constrained template argument and the equivalent template dec-

laration using a requires clause

void printAllNums(Container<Number> c);

// ...is equivalent to...

template<typename T> requires Number<T>

9



CHAPTER 2. INTRODUCING CONCEPTS

void printAllNums(Container<T> c);

Because constrained type specifiers conceal the actual template parameter this

notation is only useful for simple constraints as it can not be easily used with an

additional requires clause. Furthermore, it is not intuitively recognizable if using

the same constrained type specifier more than once in a parameter list results in

one template parameter for all occurrences or in separate template parameters for

each occurrence. The proposal specifies that the former is the case as illustrated

in Listing 2.13.

Listing 2.13: Multiple identical constrained parameters

void printNums(Number first, Container<Number> remaining);

// ...is equivalent to...

template<typename T> requires Number<T>

void printNums(T first, Container<T> remaining);

2.5.3. Constrained Template Parameters

The name of a concept may also be used to directly constrain a template parameter

as demonstrated in Listing 2.14.

Listing 2.14: A constrained template parameter

template<Number T>

void printNum(T a);

// ...is equivalent to...

template<typename T> requires Number<T>

void printNum(T a);

In contrast to constrained parameters, using constrained template parameters

makes it easier to add additional constraints because the template parameter is

visible and can be referenced in an optional requires clause.

2.5.4. Template Introductions

The last shorthand notation for constraining templates are template introductions.

A template introduction replaces the template definition by the name of the con-

straining concept followed by curly braces containing the names of the constrained

template parameters. An example of a template introduction and the according

template definition using a requires clause is given in Listing 2.15.

10



2.5. CONSTRAINING TEMPLATES

Listing 2.15: A function template constrained by a template introduction

Convertible{T, U}

U convert(T t);

// ...is equivalent to...

template<typename T, typename U> requires Convertible<T, U>

U convert(T t);

Template introductions are easier to use than constrained template parameters

or pure requires clauses in a few cases. Especially when more than one of the

arguments passed to the concept are used in the following function signature like

it is the case in Listing 2.15.

11



3. Concepts and IDEs

This chapter examines how IDEs can support the work with the new language

features introduced by the Concepts proposal and how these features can be used

to assist IDE users.

3.1. Syntax Checking and Coloring

Syntax checking is the minimum viable product for concepts support in IDEs: It

is the core feature that must be available in order to support more sophisticated

features based on concepts.

A complete integration of syntax checking should fulfill the following property:

For every program that compiles on a reference compiler the IDE must

not report any errors.

This does not necessarily imply that the IDE must report an error if a program

does not compile. But the IDE should be capable of detecting obvious syntax

errors.

Unfortunately, in case of C++ there is no clear line between syntactical and

semantical errors and checking the syntax requires more than just porting the

languages production rules to the editor (see section 4.2 for more details).

This is why we use a more technical definition for syntax checking in this term

project:

For every program that compiles on a reference compiler the IDE must

be able to construct an unambiguous abstract syntax tree without re-

porting any errors.

This also describes the level of integration we want to aim for during this project.

Thus, we say that every program for which the IDE can build an AST is syntacti-

cally correct. This AST must not contain any ambiguities which requires, in some

cases, the resolution of names to inspect if it is used in the correct context. After-

wards, further semantic analysis can be used to reduce the number of programs

12



3.2. CONCEPT CHECKS

that the IDE reports no errors for but do not compile on the reference implemen-

tation (false positives). Two of such semantic tools are described in the following

sections.

After successful syntactical analysis of a program IDEs can use this information

to highlight certain language structures in the editor. This is commonly known as

syntax coloring or syntax highlighting. A minimal level of syntax coloring is high-

lighting built-in language keywords like concept and requires. Concerning the

features of the concepts proposal also more sophisticated coloring, like highlighting

requirements for templates, would be possible.

3.2. Concept Checks

The ability to detect violations of constraints during template instantiation and

precise reporting of the error is the core feature of concepts. Integrating this level

of error reporting in IDEs would probably bring many benefits to developers.

Unfortunately, providing concept checks requires a complete implementation of

many C++ language features:

• constexpr evaluation

• Evaluation of compiler specific expressions like is class or is base of

• Evaluation of the sizeof operator which requires knowledge about the target

environment

• Template instantiation

• Template overload resolution

Most of these features are not or only partially implemented in current IDEs.

Thus, providing an accurate implementation of concept checks would require great

effort from IDE developers. But even a correct implementation can not guarantee

that it behaves analog to a specific compiler implementation because some of the

language features depend on compiler internals and the target environment.

Given the limited support for certain language features in current IDEs there

are mainly two options for integrating concept checks:

Partial Concept Checks

The IDE checks only those template instantiations whose requirements can

be interpreted.
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Delegate Concept Checks

The IDE uses a concrete compiler and interprets its error messages. Because

compiler errors usually include positions it is possible to create markers in

the editor accordingly.

Because Eclipse CDT displays compiler errors in the editor window, the second

approach is already available. Another advantage of this approach is that there is

no need for compiler and target platform specific configurations.

3.3. Assistance in Constrained Generic Code

Even if concept checks are not provided by the IDE it is still possible to use the

additional information of the template constraints to help users write generic code.

Both features presented in this section use the fact that it is often possible to derive

a prototype type from constrained template type parameters.

Given the template declaration in Listing 3.1 one can derive an abstract class X

that provides the syntax required by Equality comparable and Output streamable

either through members or global functions. An implementation is not necessary.

The IDE now can use X instead of the unconstrained type T to provide similar

functionalities as if f takes a type deriving from X.

Listing 3.1: Deriving type T from template constraints

template<typename T> requires Equality_comparable<T>() &&

Output_streamable<T>()

void f(T x){

// implementation

}

The probably most usable features on derived types for writing constrained

generic code are:

Highlight Unsupported Syntax

Uses of syntax that is not required from constraints and therefore not sup-

ported on the derived type X can be marked with a warning. Note, that

the concept proposal does not state that this should result in a compilation

error. Thus, while using a not declared member of a concrete type is an

error, using a not required member of a derived type may be bad practice

but can nevertheless result in valid code.
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Code completion

Like when working with instances of concrete types it is possible to propose

code completion on instances of derived types. When the user uses the . or

-> operators on such an instance the IDE can propose all known members

through the completion menu.

In contrast to concept checks, these features can probably be implemented in a

useful manner without the ability to interpret and instantiate C++ code within

the IDE.

3.4. Automated Refactorings

Especially for the migration towards concepts, automated refactoring tools can

be of great use for developers. This section presents some refactorings that may

become common for the work with concepts:

Extract Concept from Usage

The implicit requirements of an unconstrained template can be made explicit

by introducing a new concept. The requires expressions of this new concept

can be derived from the syntax used within the template definition. This

refactoring is already described in more details in [Sto09] for an earlier

version of the concepts proposal. Please note, that the current version of

the proposal also allows incremental refactoring toward concepts and does

no longer require that either all requirements are explicitly described with

concepts or none.

Extract Concept from Constraints

A requires clause containing a constraint expression with many constraints

is probably a sign of a missing concept. An appropriate refactoring would

be to create a new concept that abstracts some or all of those constraints

and replace the original constraint expression with a reference to the new

concept.

Propagate Constraints

Passing a template parameter to a constrained template implicitly propa-

gates the constraints from the inner template to the outer. To clearly denote

this requirement to users of the outer template it is advisable to ensure that

the requirements of the outer template are at least as strict as implied from

the inner one. An example of this refactoring is given in Listing 3.2.
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Listing 3.2: The constraints of the template function all of are implicitly propa-

gated to the InputIterator template parameter

template<typename InputIterator>

bool allGreaterThan5(InputIterator first, InputIterator last) {

return std::all_of(first, end,

[](int i){ return i > 5; });

}

// after applying Propagate Constraints

template<Input_iterable<int> InputIterator>

bool allGreaterThan5(InputIterator first, InputIterator last) {

// ...

}

Switch Notation for Constraints

Not all of the four possible notations for constraining templates are equally

expressive and some may state the programmers intentions clearer than oth-

ers. Hence, switching the notation used for constraining a template can

become necessary due to additional constraints or improves the code read-

ability. Because there is a relatively high edit distance between the various

notations (e.g. rewriting a template introduction to a requires clause) an

automated tool would heavily reduce the typing involved.

Naturally, this is only a limited overview of possible refactorings. Many well

known refactorings and quick fixes that apply to classes and interfaces can also be

ported to concepts. For example tools like Implement Concept or Pull Up/Push

Down Requirement.
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4. Parser Infrastructure of Eclipse

CDT

This chapter gives an overview over the CDT parser infrastructure. It mainly

focuses on the parts that have been touched during the implementation phase.

This omits many further aspects of the CDT parser like scanning, preprocessing

and auto-completion. For more details on these topics please refer to [Ecl11].

4.1. General Overview

A fundamental part of the CDT plugin is its ability to parse C and C++ code and

to extract syntactic and semantic meaning of symbols and words in a source file.

Based on this information, the IDE is able to provide services like syntax coloring,

error reporting, source code navigation, code completion and many more.

In general, the IDE needs information about source files similar to that required

by a compiler. Nonetheless, IDEs make quite different demands to its underlying

parser infrastructure. Based on [Ecl11] we can infer the following requirements

that mainly influenced the design of the CDT parser:

Performance

In order to achieve a responsive UI a fast parser is inevitable

Robustness

IDEs must also provide its features on only partially written source files and

code with syntax errors

Figure 4.1 gives an overview of how CDT processes source files. Please note,

that this is a rather idealized and high-level view on the actual process. The

implementation does unfortunately often blur the border between the processing

steps and mixes the responsibilities of the distinct phases. Often, we can trace

these trade-offs back to the focus on performance mentioned above and the lack of

a clear distinction between syntax and semantic in the C++ language specification.
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Figure 4.1.: Simplified Overview over the Parsing Process

Nevertheless, we can identify several processing phases that have a more or less

clear boundary to the adjacent processes. First, a source file is processed by the

preprocessor which applies macro expansions and #include and #ifdef directives

on the document and transforms it to a stream of tokens (lexing). Because the

editor displays the unexpanded original document but the parser has to work on

the expanded macros, the preprocessor must also keep track of the positions of the

tokens which involves some difficulties that are not further covered in this report.

The remaining phases are discussed in the next sections as they directly relate to

the implementation of the Concepts proposal.

4.2. Parser

Parsing C++ is difficult. Its grammar is “ambiguous, context dependent and

potentially requires infinite lookahead to resolve some ambiguities” [Wil01, 5.2]

which implies that traditional parsing techniques cannot be easily applied to C++.

There are two main properties of the C++ grammar that makes it difficult to

implement a parser:

1. Ambiguities that require infinite lookahead to be resolved

2. Ambiguities that depend on semantic to be resolved

The first category of problems is illustrated in Listing 4.1. Before the parser

reaches the final z++ expression, it is not clear if int(x) is an expression or a

declaration of x with superfluous parentheses followed by a declaration of y.

Listing 4.1: A list of three expressions

int(x), y, z++;
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In CDT’s C++ parser these kind of problems are solved by its implementation

as a hand-written recursive decent parser with backtracking and infinite lookahead.

Therefore, the parser can first try one variation and backtrack if it encountered an

error. Additionally, there are further optimizations in the parser implementation

that allow to consider the current context. For example when parsing a declaration

there apply different rules depending on whether it is in a statement, part of a

parameter list or part of a template parameter.

The second category can be demonstrated by the template instantiation T<A>.

If A refers to a variable it is an expression. If, on the other hand, A is a type

the fragment is a type-id which adheres to different grammar rules. The concept

proposal makes this example even harder to disambiguate because it adds a third

possibility: The name A may also refer to a concept which would result in a

template instantiation with a constrained template argument.

Some parsers, like the one used in GCC’s C++ frontend [GCC], overcome this

issue by using semantic information to resolve such ambiguities. The implementors

of CDT chose another approach and decided to parse in such cases both variations

and delay the disambiguation to the semantic analysis. The reasoning behind this

decision was probably that it allows a cleaner separation between parser and the

semantic resolution.

Another point that speaks for this approach are performance considerations

for use cases that do not require all names in a source file to be resolved. E.g.

when displaying the outline of a file it is sufficient to only resolve types used in

declarations whereas function bodies are of no interest.

The implementation of the C++ parser can be found in org.eclipse.cdt.internal

.core.dom.parser.cpp.GNUCPPSourceParser.

4.3. Abstract Syntax Tree

CDT’s abstract syntax tree is a more or less accurate representation of the source

code. Hence, semantically identical code fragments written using different syntax

usually translate to different ASTs. For example the call f<int>(1) to the tem-

plate function f is semantically equivalent to f(1) but the AST of the later does

not include the inferred template argument.

Furthermore, the structure of the AST wont change after its creation by the

parser expect for ambiguity resolution.
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4.4. Bindings

CDT uses bindings to represent the particular occurrences of names in a program.

Each distinct language construct that has an identifier is represented by exactly

one binding which contains at least the following information:

Declarations

Locations of all declarations of this identifier.

Definitions

Locations of all declarations of this identifier.

References

Locations where the identifier is used.

Owner

The binding that “owns” this binding. E.g. a parameter is owned by its

enclosing function declaration.

Scope

The scope in which this binding is declared (or defined if there are multiple

declaring scopes).

Form

What is it exactly the identifier represents. Including all information neces-

sary for checking if references to the identifier are used correctly or not.

Especially the last point should give a taste about how powerful bindings are.

E.g. a binding for a function includes references to all its parameter bindings, its

type, what specifier have been used to declare it and - in some cases - even how

its return statement can be evaluated.

4.4.1. Binding Resolution

Every Name node in the AST has a resolveBinding() method that tries to resolve

the identifier to a binding if not yet available. The binding resolution is mainly

performed by CPPVisitor.createBinding(). This method decides whether the

name is used within a declaration/definition or as a reference.

If the name is used within a declaration or definition, binding resolution creates

a new binding representing the declared language construct. The binding creation
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includes analyzing the declaration AST (often the declarator) and deriving the

according type of the new binding.

If the name is used as a reference, binding resolution has to find an existing bind-

ing that matches the referenced name. This task is performed by CPPSemantics.-

resolveBinding(). Binding resolution also checks if the name is used appropri-

ately or produces a binding resolution error otherwise. For example, a name used

as a function reference within a function call expression that resolves to a variable

binding of type int results in such an error.

4.5. Codan

Codan is a static analysis framework built into CDT and stands for “CODe ANal-

ysis”. Its intention is to support plug-in developers to write lightweight checkers

to find semantic errors, violation of coding guidelines or similar flaws in C/C++

code. Checkers are applied to the AST after binding resolution and produce mark-

ers with messages that are displayed by the IDE.

CDT itself already contains some checkers that are part of the org.eclipse.-

cdt.codan.checkers package. Beside the checkers that inform users of common

sources of errors like assignment statements in if-conditions, there are several more

that perform semantic checks not already spotted by the binding resolution algo-

rithm. For example AbstractClassInstantiationChecker reports a problem

when the user tries to instantiate a class with one or more pure virtual member

functions.
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5. Implementing Concepts Lite in

CDT

This chapter covers details from the implementation and various major design

decisions.

Please note, that we use an abbreviated notation when referring to AST classes

in class diagrams and text. For example RequiresClause stands for the cor-

responding AST class org.eclipse.cdt.internal.core.dom.parser.cpp.CPP-

ASTRequiresClause and the associated public interface if present. This is in

case of RequiresClause the interface org.eclipse.cdt.core.dom.ast.cpp.-

ICPPASTRequiresClause . The same convention applies to references to binding

classes. Thus, VariableConcept refers to org.eclipse.cdt.internal.core.-

dom.parser.cpp.CPPVariableConcept .

5.1. Concept Definitions

A concept definition is either a function template definition or a variable template

declaration with an initializer clause whereat in both cases the concept specifier

must be present. Additionally there are further rules that must apply to a concept

definition [Sut14b, 7.1.7]. E.g. a concept must be of type bool or its body must

consist of exactly one constraint expression [Sut14b, 14.10.7]. Listing 5.1 shows

some simple concept definitions that are either correct or violate at least one rule

of the specification.

Listing 5.1: Valid and invalid concept definitions

// valid

template<typename T> concept bool C1 = true;

template<typename T> concept bool C2(){ return true; }

// invalid

concept bool C3 = true; // must be a template

template<typename T> concept int C4 = 1; // must be of type bool
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template<typename T> concept bool C5 = 1; // must be a

constrain-expression

5.1.1. Parsing the Concept Keyword

The syntax for concept definitions is specified by only one additional production

rule:

decl-specifier:

"concept"

...

This enables the use of the concept specifier in declarations. Hence, everything

that is required to parse concept definitions is to recognize the concept keyword

at a specifier position. This is pretty straight forward and can be accomplished

by adding the new concept token type to org.eclipse.cdt.core.parser.IToken and

org.eclipse.cdt.core.parser.Keywords. And applying the above addition to the decl-

specifier production rule to the declSpecifierSeq() method of GNUCPPSource-

Parser.

Figure 5.1.: Excerpt of the modified DeclSpecifier hierarchy
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In the AST, the additional specifier is implemented as a boolean flag isConcept

in DeclSpecifier nodes that indicates whether the concept keyword was used in

the declaration. Figure 5.1 illustrates this modification.

Although there are several kinds of DeclSpecifiers like SimpleDeclSpecifiers

as in const int i; or NamedTypeSpecifiers as in Person p; the concept spec-

ifier is technically only valid on SimpleDeclSpecifiers with the type bool. But

because we’ve decided to defer the check for invalid concept definitions to a later

phase, it is necessary that all DeclSpecifiers come with the isConcept flag.

5.1.2. Concept Bindings

Concepts are a slightly odd language construct because they can be used both like

types or like values and functions. Given the function concept C with one type

parameter, it is used as a value in the expression C<int>() + 1 but like a type

in the parameter declaration C c.

This leads to the complex type hierarchy for the new concept bindings as illus-

trated in Figure 5.2.

Figure 5.2.: Concept Bindings Hierarchy

As a base for all concepts we use the Concept marker interface. Concept cur-
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rently defines no methods on its own but inherits the interface of Template-

Definition. Hence, a concept is always a template definition. The two con-

crete implementations of Concept are FunctionConcept and VariableConcept.

Whereas the former directly inherits from FunctionTemplate and the later from

TemplateDefinition.

Instances of Concepts are created during the binding resolution in CPPVisitor

whenever it encounters a function or variable definition with the concept specifier.

5.1.3. Overloaded Concepts

Like with functions and function templates, it is possible to overload function

concepts (but not variable concepts). Listing 5.2 demonstrates how the function

C is overloaded three times. Once as a concept with one type parameter, once

with two type parameters and once as a regular function with a non-type template

parameter.

Listing 5.2: Concepts and Function Overloading

template<typename T> concept bool C(){ return true; };

template<typename T, typename U> concept bool C(){ return true; };

template<int I> bool C(){ return I == 0; };

bool f(C c){

return C<1>(1);

}

When the semantic analysis tries to resolve the references to C in the above ex-

ample there are several candidates too choose from. In the case of the constrained

parameter declaration C c the correct overload would be the first declaration of C.

The name resolution algorithm used in CPPSemantics returns instances of Function-

Set containing all candidates that are accessible in the lookup scope if there are

multiple possibilities. A FunctionSet is a collection of possible bindings a name

may refer to and an example of a two-phase-binding. Two-phase-bindings require

two steps to be resolved whereas the second step is usually performed after related

bindings have been resolved. In case of overloaded function names, the binding

resolution algorithm must first resolve all function arguments before it is possible

to resolve which overload has the best matching signature.

Figure 5.3 shows how functions sets and function concepts relate in the binding

structure. It is not clear from source code and documentation why FunctionSet

does only extend Binding and not Function. This is probably an error in the
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Figure 5.3.: Function Set Bindings for Managing Calls to Overloaded Functions

current implementation because other two phase bindings implement the most

concrete interface that are shared by all bindings it can resolve to. Which would

be Function in the case of FunctionSet. Nevertheless, function sets have to be

considered when resolving names that may refer to concepts.

5.2. Requires Expressions and Requirements

Requires expressions and requirements are specified in [Sut14b, 5.1.3] and are

used for defining syntactic requirements in concepts.

Listing 5.3: A Concept Consisting of Exactly one Requires Expression with a Type

Requirement and a Compound Requirement

template<typename T> concept bool C(){

return requires(T a, T b){

typename A<T>;

{a + b} -> T;

}

}
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5.2.1. Parsing Requires Expressions

The proposed syntax for requires expression introduces the following new produc-

tion rules:

requires-expression:

"requires" requirement-parameter-list requirement-body

requirement-parameter-list:

"(" parameter-declaration-clause? ")"

requirement-body:

"{" requirement-list "}"

requirement-list:

requirement

requirement-list requirement

requirement:

simple-requirement

type-requirement

compound-requirement

nested-requirement

simple-requirement:

expression ";"

type-requirement:

typename-specifier ";"

compound-requirement:

constexpr? "{" expression "}" "noexcept"? trailing-return-type?

";"

Because there is no existing language construct that interferes with requires

expressions and the syntax does not introduce new ambiguities, its implemen-

tation in CDT is relatively straight-forward. There is the additional requires

keyword which is implemented analogous to concept in subsection 5.1.1. Fur-

thermore, GNUCPPSourceParser is extended by the requiresExpression() and

requirement() methods whereas both methods map the above production rules

more or less as-is to its Java equivalent.

Figure 5.4 shows the AST structure that represents requires expressions. A

RequiresExpression is an Expression with a list of parameter declarations and

a non-empty list of requirements.

A Requirement is either an ExpressionRequirement, a TypeRequirement or

a NestedRequirement. For the sake of simplicity, we’ve decided to map simple

and compound requirements to the same type. Hence, a simple requirement is

represented as an ExpressionRequirement with isConstexpr and isNoexcept
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Figure 5.4.: AST Structure of Requires Expressions

set to false and no trailingReturnType (set to null).

5.2.2. Scope Lookup for Requirement Expression Parameters

Because the parameter list of requires expressions can introduce new names, each

requires expression forms a new scope. This must be considered in the scope

lookup mechanism in CPPVisitor’s getContainingScope() method.

Every AST node introducing a scope has an associated ICPPScope object that

can be retrieved by getContainingScope(). In the case of RequirementExpression

we decided to use the same scope implementation as used for block scopes. Be-

cause parameter lists of requirement expression can only introduce local parameters

without default arguments it seemed feasible to reuse block scopes.

5.3. Requires Clauses

A require clause is the requires keyword followed by a constraint expression and

can be used after template and function declarations. Its syntax and semantic is

described in [Sut14b, 14] for requires clauses on templates and in [Sut14b, 8] on

function declarations.
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5.3.1. Parsing Require Clauses

The concept lite specification proposes a minor modification to support requires

clauses on declarators:

declarator:

basic-declarator requires-clause?

basic-declarator:

ptr-declarator

noptr-declarator parameters-and-qualifiers trailing-return-type

Whereas the optional requires clause is only allowed when the declarator declares

a function.

Beside that, requires clauses may also appear in template declarations:

template-declaration:

template "<" template-parameter-list ">" requires-clause?

Or in nested requirements:

nested-requirement:

requires-clause ";"

A requires clause itself is defined by the following production rule:

requires-clause:

"requires" constraint-expression

constraint-expression:

logical-or-expression

A logical-or-expression is basically an expression that can be used as the

first operand of the conditional operator ?:. In contrast to expression a logical-

or-expression must not contain the assignment and comma operators. This type

of expressions can be parsed analog to constant-expression and is implemented

in constraintExpression() in CDT’s C++ parser.

The representation in the AST for requires clauses is quite simple and illustrated

in Figure 5.5. RequiresClause is basically just a wrapper for an expression which

is its only property.

Instead of using a distinct AST node, it would also be possible to directly refer

to the according expressions in the constraint properties of TemplateDeclaration

and FunctionDeclarator. However, we’ve decided to use a distinct AST node in

order to ease the traversal of constraints.
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Figure 5.5.: New AST node for requires clauses

5.3.2. Persisting Constraints

Because constraints on templates and functions are part of their signature, it is

crucial that requires clauses with the constraint expressions are available through

the index. Unfortunately, ASTs cannot be serialized which raises the need for an

alternative representation of expressions.

A possible solution for this problem is to use CDT’s evaluation infrastructure

which is used to evaluate constexprs. This functionality is only capable of rep-

resenting and evaluating some parts of C++ 11 style contexprs and is limited

when it comes to evaluating template instantiations. But there is ongoing work

by Silvano Brugnoni to improve the current implementation parallel to this term

project.

5.4. Handling Syntactic Sugar

Beside the core concepts of concept declarations and require clauses the concept

proposal also specifies alternative syntax for defining constraints on template pa-

rameters. These alternative forms are syntactic sugar. Hence, there is an exact

mapping of such an alternative form to an according requires clause and the syntax

is only introduced for giving developers a more convenient way to express some

common language idioms.

Another example of syntactic sugar in C++ are lambda expressions: Every

lambda expression can also be written as a class with an overloaded application

operator () whereas every captured variable is a constructor argument that be-
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comes a field of the class. Lambda expressions are just an easier way to use the

common language idiom of functors.

While syntactic sugar is usually easy to handle in compilers it is often a source of

additional complexity in IDEs. Some features like syntax coloring and automated

refactoring benefit from a bijective transformation from source code to AST. But

other features, mainly semantic analysis, are simpler when they can be performed

on a desugared representation of the source code. Unfortunately, desugaring is

often a destructive transformation such that it is no longer possible to map AST

nodes to the according positions in the source. Furthermore, desugaring often

introduces new AST nodes that are not present in the original source like the

functor class of a desugared lambda expression.

The reason why it is simpler to perform semantic analysis on desugared trees is

mainly that there are fewer cases that have to be considered when processing the

AST. For example lambda expressions must not be considered because they are

already transformed to a functor.

Up to now, syntactic sugar was not a big deal in CDT because there are only a

few notations that can truly be considered as syntactic sugar in C++. For example

the addition assignment operator += - one of the prime examples of syntactic

sugar - does not exactly fall into this category: The expression a = a + 1 is not

semantically equivalent to a += 1 depending on how the =, + and += operators are

overloaded.

This changes with the concept lite proposal as it introduces several equivalent

ways to declare a constrained template as demonstrated in Listing 5.4. All three

alternative forms in this example can be transformed to the first declaration which

is using a requires clause. This is not only the case in this specific example but

for every template introduction, constrained parameter and constrained template

parameter there is an equivalent requires clause.

Listing 5.4: Four semantically equivalent function template declarations

// using a requires clause

template<typename T> requires Any<T> void foo(T x);

// using a template introduction

Any{T} void foo(T x);

// using a constrained parameter

void foo(Any x);

// using a constrained template parameter
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template<Any T> void foo(T x);

Implementing the various alternative notations for template constraints required

a fundamental decision on how syntactic sugar should be handled in this case.

There where three strategies that have been considered:

Desugared AST

This would be the optional solution for semantic analysis. The AST uses

only one common representation for all kinds of constrained templates. To

support AST rewrites and syntax coloring, the AST must also contain infor-

mation about how it can be transformed back to its original source.

Multiple ASTs

Use an AST close to the source code and desugar it further when required.

Undesugard AST and Normalized Bindings

Don’t desugar the AST but create normalized bindings. Hence, in Listing 5.4

all four declarations should result in exactly the same binding.

All three options come with their disadvantages. The first two approaches don’t

fit well into the existing infrastructure. To directly desugar the AST the parser

must know about the semantic meaning of names to distinguish concepts from

types in parameter declaration. This violates the desired separation between pars-

ing and semantic analysis. On the other hand, having multiple versions of the

AST is difficult because of its design based on mutability and lazy loading. Be-

cause bindings are computed on-demand, it would be hard to ensure that they are

not unnecessarily derived more than once.

The third approach is problematic because it complicates the mapping from

declaration ASTs to bindings. Up till now, the form of the declaration implied

the type of the binding. This is no longer true as a function declaration may

become a template declaration if one of its parameters is a constrained parameter.

Nevertheless, we’ve finally decided to take this approach. It requires the fewest

changes to the existing infrastructure and fits more or less to the current AST

structure.

5.5. Template Introductions

Template introductions is one of the alternative notations to constrain templates

in a more concise style. On the syntax level, template introductions introduce an

alternative production rule for template declarations:
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template-declaration:

"template" "<" template-parameter-list ">" requires-clause?

declaration

template-introduction declaration

template-introduction:

nested-name-specifier? concept-name "{" introduction-list "}"

introduction-list:

introduction-list "," introduced-parameter

introduced-parameter:

"..."? identifier

The nice aspect of this notation from a compiler builder point of view is that it is

not ambiguous like constrained parameters and constrained template parameters.

Therefore, the according changes to the parsers are straight forward and include

only the implementation of the additional production rules.

The resulting AST is illustrated in Figure 5.6. A TemplateIntroduction is

implemented as a specialization of a TemplateDeclaration and a Template-

IntroductionParameter is a specialization of a TemplateParameter. Unfortu-

nately, this subtype relationship holds not true in all cases because the parameters

field of TemplateIntroduction must consist only of TemplateIntroduction-

Parameters.

Figure 5.6.: New AST nodes for template introductions
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5.5.1. Resolve Introduced Parameters

As discussed in section 5.4 bindings for template introductions must be normalized

such that they are identical to the according binding when declared using only

requires clauses.

The binding creation algorithm for template introductions uses the referenced

concept for deriving prototypes for each introduced parameter. These prototypes

can then be used to create the effective parameter bindings.

Listing 5.5: Resolution of introduced template parameters

template<typename T, int I> concept bool C = true;

C{A, B} void foo(A a, Array<B> b);

template<typename A, int B> requires C<A, B>

void foo(A a, Array<B> b);

Listing 5.5 gives an example of how the template parameters for a desugared

template introduction can be derived. The algorithm uses the following steps:

1. Find the concept with the identical name and the identical number of tem-

plate parameters

2. Each template parameter of the concept becomes the prototype for the in-

troduced parameter at the same position

3. The derived parameter declaration is identical to the prototype’s declaration

but it uses the name of the template introduction

5.6. Constrained Parameters

Constrained parameters are specified through constrained-type-specifiers and

the following additional production rules:

simple-type-specifier:

...

constrained-type-specifier

constrained-type-specifier:

nested-name-specifier? constrained-type-name
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constrained-type-name:

concept-name

partial-concept-id

concept-name:

identifier

partial-concept-id:

concept-name "<" template-argument-list? ">"

More specific, a constrained parameter is a parameter declaration with a con-

strained type specifier. This syntax is highly ambiguous as the parameter decla-

ration C a may declare a constrained or a unconstrained parameter depending on

whether C refers to a type or a concept. Hence, every parameter declaration that

does not use a built-in type specifier like int or float is potentially constrained.

Figure 5.7.: New AST structure for supporting constrained parameters

Figure 5.7 illustrates how the AST structure has been extended to support

constrained parameters. The declSpecifier of a ParameterDeclaration now
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can also be a ConstrainedTypeSpecifier.

5.6.1. Ambiguity Resolution

The ambiguous nature of constrained parameters require the use of CDT’s am-

biguity resolution mechanism. Disambiguation is achieved by parsing all possible

alternatives and store them in an ambiguity node. Ambiguity nodes must ex-

tend ASTAmbiguousNode and implement the common subset of interfaces of all

candidate types.

After parsing, the ambiguity resolution algorithm in ASTAmbiguousNode.do-

ResolveAmbiguity() tries for each alternative to resolve all names in its subtrees.

The first alternative that does not result in any resolution errors or the one with

the smallest error count is then chosen as the correct replacement for the ambiguity

node.

Given the additional constrained type specifier we have a new ambiguity that

appears whenever a constrained type specifier is allowed. In this case, the parser

creates a CPPASTAmbiguousDeclSpecifier including both alternatives of type

NamedTypeSpecifier and ConstrainedTypeSpecifier. This new ambiguity node

is also a sub-type of DeclSpecifier.

5.6.2. Invented Template Parameters

A function with a constrained parameter is actually a function template with

one template type parameter. Listing 5.6 shows how the function foo with two

constrained parameters a and b can be desugarred to an identical declaration

using the requires clause notation. It also demonstrates that parameters with the

identical constraints share the same type parameter. Another possibility would

have been to desugar foo to a template declaration with two type parameters one

for each parameter.

Listing 5.6: Desugarred constrained parameters

template<typename T> concept bool Any = true;

void foo(Any a, Any b);

template<typename X> requires Any<X>

void foo(X a, X b);
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As discussed in section 5.4, the binding resolution must result in the same bind-

ings for both function declarations in Listing 5.6. And because template bindings

also include information about all template parameters we have to “invent” addi-

tional type parameters.

Invented template parameters are derived in CPPFunctionTemplate.initInvented-

TemplateParameters(). The algorithm assigns to every constrained type specifier

in the functions parameter list a template parameter binding such that distinct

constraints have distinct template parameters but identical constraints are associ-

ated to the same parameter.

5.7. Constrained Template Arguments in

Parameters

Placeholders introduced by constrained type specifiers may also be used for tem-

plate arguments of parameter types. This allows defining constraints on template

arguments using the same shorthand syntax as discussed in section 5.6.

Listing 5.7 gives an example of this feature. Function f takes any vector whose

type argument is a model of the concept Any (which is any type in this case).

Listing 5.7: Desugarred constraint on template argument

template<typename T> concept bool Any = true;

void f(vector<Any> v);

template<typename X> requires Any<X>

void f(vector<X> v);

5.7.1. Combinational Explosion in Ambiguous Template

Arguments

CDT’s strategy of separating ambiguity resolution from parsing introduces dif-

ficulties with ambiguous template arguments. Namely, parsing nested template

arguments leads to exponential growth in the number of possible disambigua-

tions. E.g. when parsing A<B<C>> the name B<C> can be a type-id or an

id-expression where C may be again an ambiguous fragment. Hence, parsing

A<B<B<B<B<C>>>>> already leads to 24 = 16 ambiguous trees.
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Figure 5.8 gives a simplified illustration of the resulting AST when using a naive

approach to parse the ambiguous expression A<B1<B2<C>>>.

Figure 5.8.: Simplified AST of the ambiguous expression A<B1<B2<C>>>

This exponential complexity in both space and time led to out-of-memory er-

rors in Eclipse CDT prior to 7.0.1. This was especially a problem in libraries

using macro expansions to generate deeply nested template arguments as dis-

cussed in [Ecl10]. This bug has been addressed by adopting the parser such

that child nodes are reused between ambiguities. The improved algorithm in

GNUCPPSourceParser.templateArgument() uses the following principles:

• Construct alternative AST nodes from already parsed nodes instead of back-

track and reparse every possible alternative. This reduces time complexity

to O(n) where n is the nesting level of template arguments.

• Share ambiguous children between ambiguous parents as illustrated in Fig-

ure 5.9. This reduces space complexity to O(n).

As it becomes evident in Figure 5.9 the output of the parser is no longer a valid

AST. Some nodes are children of more than one other node which violates the

definition of a tree. Furthermore, the parent attribute of nodes can reference at

most one node which leads to unidirectional parent/child relationships.
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Figure 5.9.: Improved object graph with linear size

This is why AmbigousTemplateArgument uses the beforeAlternative() hook

to fix the parent/child relationship before an alternative is processed by the am-

biguity resolution algorithm (see also subsection 5.6.1).

The concept proposal introduces with constrained template arguments a fur-

ther, possibly ambiguous, alternative for template arguments. Which increases

the theoretical size of the ambiguity tree to 3n when parsing template argu-

ments in parameters. Thats why we had to integrate constrained template ar-

guments into the improved parser and ambiguity resolution algorithm and add

ConstrainedTypeSpecifier as an additional alternative to AmbiguousTemplate-

Argument.

5.8. Constrained Template Parameters

Constrained template parameters have similar semantics to constrained parameters

but can be used to constrain any kind of template arguments additionally to types.

The additional production rules are:

template-parameter:

...

constrained-parameter

constrained-parameter:

nested-name-specifier? constrained-type-name "..."? identifier?

default-template-argument?
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default-template-argument:

"=" type-id

"=" id-expression

"=" initializer-clause

Please note, that the symbol name constrained-parameter is slightly mislead-

ing because these production rules do not apply to constrained parameters of func-

tions. A probably better name would have been constrained-template-parameter.

Figure 5.10.: Additional AST node for constrained template parameters

The required changes to the AST are shown in Figure 5.10. Unfortunately, the

implementation is based on an older version of the concepts proposal as of Novem-

ber 2014. This is why ConstrainedTemplateParameter uses a constrained type

specifier instead of just the name of the concept as suggested by the production

rules above. This is not technically wrong, but introduces unnecessary indirection

and should probably be changed in further development.

Because the default template argument can be a type, an expression or an ini-

tializer clause the defaultArgument property uses the common supertype Node

of all three possible argument types. This may be to unspecific for further imple-

mentations but was sufficient up till now because default arguments are not yet

checked.

The constrained template parameter syntax also introduces an ambiguity with

non-type template parameters. This ambiguity is resolved by CPPASTAmbiguous-

40



5.8. CONSTRAINED TEMPLATE PARAMETERS

TemplateParameter nodes using the same approach as described in subsection 5.6.1.

5.8.1. Deriving Bindings for Constrained Template Parameters

While constrained parameters require “invented” template parameters for binding

resolution, constrained template parameters already are template parameters but

of a unspecified kind. In the template signature template<C X> where C is a

concept X may refer to a non-type parameter, a type parameter or a templated

template parameter depending on the definition of C.

Thus, in order to create the correct binding for a constrained template param-

eter, binding resolution must derive the kind of the template parameter from the

according concept. Listing 5.8 gives an overview over how the kinds of constrained

template parameters are derived by comparing constrained templates with their

desugarred equivalents. The examples illustrate that constrained template param-

eters are of the same kind as the first parameter of the constraining concept.

Listing 5.8: Deriving template parameter kinds from concept definitions

// concepts of different kinds

template<int I> concept bool C1 = true;

template<typename T> concept bool C2 = true;

template<template <typename> class T> concept bool C3 = true;

template<typename T, typename U> concept bool C4 = true;

// constrained templates with the desugarred equivalent

template<C1 X> void f();

template<int X> requires C1<X> void f();

template<C2 X> void f();

template<typename X> requires C2<X> void f();

template<C3 X> void f();

template<template <typename> class X> requires C3<X> void f();

template<C4<int> X> void f();

template<typename X> requires C4<X, int> void f();

This behavior is implemented in CPPTemplates.createBinding() by copying

the binding of the first template parameter of the concept with the name of the

constrained template parameter.
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This chapter describes the testing infrastructure and how the implementation has

been verified.

6.1. Testing Parser and Binding Resolution

Most aspects of the implementation described in chapter 5 are covered in org.

eclipse.cdt.core.parser.tests.ast2.AST2ConceptsTests. All of these tests

use the C++ parser including binding resolution as one unit under test which leads

to relatively coarse grained tests.

This test design is mainly a result of the parser architecture. Because there is

no convenient way to construct and compare expected to actual ASTs, it is easier

to assert the relationship between language constructs.

Listing 6.1: A test verifying the simplest form of a template introduction

// template<typename T> concept bool Any = true;

//

// Any{X}

// struct S{ X a; };

public void testTemplateIntroduction() throws Exception {

IASTTranslationUnit tu = parseAndCheckBindings();

IBinding x = findName(tu, "X").resolveBinding();

assertInstance(x, ICPPTemplateTypeParameter.class);

IBinding s = findName(tu, "S").resolveBinding();

assertInstance(s, ICPPTemplateDefinition.class);

}

Listing 6.1 gives a simple example of how these relationships are tested. First,

parseAndCheckBindings() parses the C++ code from the comment right above

the test and checks for syntax errors and if every name can be resolved and does not
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result in a resolution error. This ensures that the syntax for template introduction

can be parsed (the syntax for concept definitions is checked in preceding tests).

Afterwards, we check that names resolve to bindings of the expected type. This

shows that (in this case) the bindings resolution algorithm works as specified.

Splitting the checks for the parser and for the binding resolution into two distinct

tests would only increase code duplication and lead to highly coupled tests.

Further tests concerning concepts can be found in org.eclipse.cdt.core.

parser.tests.prefix.BasicCompletionTest. These tests check the proposals

returned by CDT’s code completion. Currently, code completion is only supported

in requires expressions but further support for concepts would be possible.

6.2. Verifying with Origin

As far as we know, there is currently only one significant code base that heavily

relies on the new features of the concepts proposal: The Origin library by A.

Sutton et al. demonstrates how concepts can be applied to the STL. Its design

is described in [SS12] and the newest version of the implementation is available

at [Sut15a]. The library uses the syntax from the latest version of the concept

proposal and builds with the GCC C++1z concepts branch [Sut14a].

During this project, we have periodically used the latest version of the origin

library to verify our implementation. Because the missing index integration for

concept bindings leads to many resolution errors that are not addressed yet, an

automated verification was not yet feasible. Instead of that we performed a manual

integration test.

6.2.1. Setup

For manual testing we executed our branch of CDT with the following plugins

enabled:

CUTE [IFS15]

For displaying markers on binding errors. CDT does not report all resolution

errors by default.

pASTa [Bru15]

For analyzing AST structures and bindings.

Afterward the current version of Origin was imported into CDT as a new project.
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6.2.2. Checklist

During the manual integration tests we checked the following behavior:

Syntax Coloring

The new keywords concept and requires must be colored in the same color

as other keywords.

Syntax Errors

The editor must not report any syntax errors in Origin.

Binding Resolution Errors

Names defined in the same translation units must be resolved. Hence there

must be no resolution errors. Bindings across translation units are currently

excluded as they may require a complete index.

Bindings

Identifiers of concepts must be correctly resolved to the according concept

definition. This can be verified by using the “Open Declaration” feature of

Eclipse.

Code Completion

Is code completion available for the new concept syntax?

Because the Origin library grew steadily during this project, we limited our

manual checks to the files origin/core/concepts.hpp and origin/sequence/

algorithm.hpp. The former defines various commonly used concepts and the

later defines additional concepts and functions accordingly to STL’s <algorithm>

header.

6.2.3. Findings

Testing our implementation with the Origin library (as of January 2015) revealed

no major issues concerning performance or usability of Eclipse CDT. For example

syntax coloring worked as expected as shown in Figure 6.1.

Besides the already excluded resolution errors due to the missing index we found

the following issues that are not yet already fixed:

• Syntax errors when using default values for constrained template parameters
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• Code completion works only within requires expressions; concept names are

not proposed when writing template introductions, constrained template pa-

rameters or constrained parameters

Figure 6.1.: The Equality Comparable concept in CDT; the red marker refer to

missing compiler intrinsics and functionality of the STL

6.2.4. Adequacy

Naturally, using a manual approach to verify the implementation on such a small

project is everything else than flawless. Especially when every marker has to be

checked whether it can be traced back to a not yet implemented feature (like the

persisted bindings for concepts) or it is actually an error.

Additionally, the Origin library does mainly use requires clauses and constrained

template parameters for defining constraints on templates. Template introductions

and constrained parameters on the other hand are only rarely or never used.
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Hence, this integration tests are not meant for proving the implementation cor-

rect but rather for ensuring that there are no unexpected implications and perfor-

mance bottlenecks.
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7. Conclusion

This final chapter covers the results of this term project and gives and outlook on

what is necessary to fully support concepts in CDT and what other developments

are possible based on this work.

7.1. Accomplishments

During this project we brought basic support for concepts to Eclipse CDT and laid

a foundation for more sophisticated tools based on the new language constructs.

Except for a few corner cases, the achieved level of integration is as high as de-

scribed in section 3.1. Thus, the IDE is able to create an unambiguous AST for

most valid C++-with-concepts source code.

Our contributions to the CDT project include the following areas:

Parser

We extended the parser to support all of the new language constructs like re-

quires clauses, requires expressions, template introductions, constrained pa-

rameters and constrained template parameters. In some cases, this required

tailored solutions to handle the ambiguous parts of the language specifica-

tion.

AST Structure

The main challenge during this project was to find an adequate representa-

tion of the new language constructs in the AST. The extended AST structure

fits to the existing infrastructure but respects the new requirements due to

the heavy use of syntactic sugar in the concepts proposal.

Binding Resolution

The binding resolution, which is also necessary for disambiguating ASTs,

revealed some unexpected difficulties. For example, we had to use new ap-

proaches to handle “virtual” templates that are not explicitly defined in the

source code but implied by the use of constrained parameters.
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Beside these corner stones of the implementation we also enabled basic syntax

coloring and auto-completion for requires expressions.

Finally, all these extensions have been applied to an existing code base that

addresses an relatively complex problem: Parsing and analyzing C++ code. Beside

this inherent complexity in the CDT source code, there is also a certain level of

accidental complexity due to many performance considerations and several years

old legacy code. This required extra caution when changing existing code to ensure

that no existing features are impaired.

7.2. Remaining Tasks

In order to provide complete support for the new syntax introduced by the concept

proposal there are some remaining issues not yet addressed:

Persisting Concepts

Concept bindings are not stored in CDT’s index and therefore it is not yet

possible to resolve concepts between translation units. This task does prob-

ably not result in a lot implementation effort but requires a detailed under-

standing of CDT’s (un-)marshaling mechanism.

Persisting Constraints

Because constraints on template parameters are also part of the template sig-

nature they should also be persisted. This is especially crucial for advanced

features like concept checks. One approach to persisting constraints may be

to use CDT’s evaluation infrastructure (implementations of ICPPEvaluation)

and derive evaluation nodes from template introductions and constrained pa-

rameters to a normalized representation as requires clauses.

Default Arguments for Constrained Template Parameters

The current implementation misses the ability to use default arguments in

constrained parameters. To address this issue the parser must be slightly

extended. Binding resolution must then ensure that the default argument

matches the kind expected by the constraining concept. Hence, a type as

default argument is only valid if the constraining concept’s first template

parameter is a type parameter.

Fold Expressions

Fold expressions are a feature that has been added to the proposal during

the last few weeks of this project and have not been considered during the
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implementation. They are intended to write concepts constraining template

parameter packs and introduce additional syntax. As they can be clearly

disambiguated from other expressions, parsing fold expressions should be

relatively straight forward to implement.

Reporting Ill-formed Requires Clauses and Concepts

Our implementation of the parser is relatively forgiving when parsing re-

quires clauses and concepts. For example, it does not report syntax errors

when encountering requires clauses calling non-constexpr functions or func-

tion concepts consisting of more than one expression. This allowed us to

reuse the existing infrastructure for parsing expressions without introducing

too much additional complexity. It is also arguable whether these errors

should be reported by the parser or if they can be covered by an separated

Codan plug-in.

Since the proposal is not yet approved it is also possible that further changes

may require additional implementation effort.
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A. Project Management

A.1. Tools

Eclipse 4.4 Luna

The development environment

Git For version management

Jenkins

Deployed on the project server and used during the project for continuous

builds

Redmine

Deployed on the project server and used during the project for issue and

time tracking

Multimarkdown

To create this document using LATEX as the backend

Astah

To create most of the figures

A.2. Time Report

The mandatory workload of this project is 12 ECTS which corresponds to a total

of 360 hours. The project duration was initially framed to 18 weeks which gives

an average workload of 20 hours per week. The sum of actual work hours was

400. The distribution of the average planned and actual workload is illustrated in

Figure A.1.
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Figure A.1.: Weekly summary of the reported work hours (blue) compared to the

average planned workload (red)

A.3. Project Schedule

At the beginning of the project we’ve planned a stepwise schedule along the layers

of the CDT parsing infrastructure: First design the mandatory changes for the

AST, then extend the parser to accept the new syntax and then implement type

checking in constrained template definitions.

Unfortunately, this schedule heavily underestimated the complexity of the CDT

parser and the characteristics of the new language features. Furthermore, it turned

out that the initially scheduled proceeding was too sequential (waterfall). Provid-

ing a practical design for the whole AST was not possible without a detailed

understanding of CDTs internal processes.

Instead of that we then followed a more iterative approach: Implement more or

less isolated features vertically through all layers one after another. This approach

is also nearer to the parser’s architecture as there is no clear distinction between

decoupled phases. Furthermore, it allowed to quickly react to unexpected pitfalls.
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