
Unobtrusive Refactoring Tools for Code
Extraction in Scala

Author
Lukas Wegmann

Supervisor
Prof. Peter Sommerlad

Technical Adviser
Mirko Stocker

University of Applied Science Rapperswil

Term Project, January 27, 2014

Abstract

While the support for automated refactoring for the Scala programming language in-
creased steadily over the last few years, it is still not as elaborated as the tools available
for other statically typed languages like Java or C#. The few refactoring tools pro-
vided by major Scala IDEs are heavily influenced by their Java equivalents and are not
particularly tailored to the lightweight and expressive nature of Scala.

This project provides a set of new refactoring tools for code extraction that offer
lightweight invocation methods and require minimal user interactions while still remain-
ing flexible. The source transformation logic of the new tools has been implemented as a
part of the Scala Refactoring library and is also integrated in the Scala IDE for Eclipse.

The new tools support the refactoring techniques Extract Method, Extract Value, Ex-
tract Parameter and a new refactoring called Extract Extractor that allows to create
abstractions of patterns via Scala’s extractor syntax.

Management Summary

This report describes a new set of tools integrated into Scala IDE for Eclipse for au-
tomated extraction refactorings and proposes a lightweight but powerful concept for
further refactoring tools.

Status Quo

Refactoring is the process of improving the internal design of a program without changing
its external behavior. It is a technique that is not restricted to a particular programming
language or a development environment and can be performed manually. Because apply-
ing refactorings manually is error prone and requires sometimes global, labor-intensive
changes to the program code, many IDEs offer automated tools to support developers
performing some common refactoring techniques.

For Scala, a statically typed but lightweight programming language, there are cur-
rently several IDEs that offer a more or less elaborated suite of automated refactoring
tools. One of these is the Eclipse based Scala IDE which uses the Scala Refactoring
library developed by Mirko Stocker during his master’s thesis. Scala Refactoring is an
IDE independent library providing implementations of common refactoring tools and
additional utilities for code analysis, generation and transformation.

Conceptually, the refactoring tools offered by Scala IDE are quite similar to the ac-
cording tools in Eclipse JDT, a development environment for the Java programming
language. These tools mostly use a common work flow:

1. Select a code snippet to refactor

2. Invoke the tool that can apply the desired refactoring

• The tool checks if the selected code fulfills the preconditions and offers some
configuration options

3. Configure the refactoring according to your needs

• The tool validates the configurations and calculates the changes to the code

4. Review the changes in a preview window (optional for some refactorings)

• If the user confirms, the changes are applied automatically to the code in the
editor window

i

Additionally to these refactoring tools there are shortcuts for some refactorings that
offer a simpler invocation method without any configuration options. In this case, the
refactoring result is applied directly in the editor window. But this simplified invocation
methods tend to trade simplicity with flexibility and power.

Goals

The initial goal of this project was to implement additional refactoring tools for the
Scala Refactoring library and provide integrations in Scala IDE. During the analysis of
the objectives it emerged that there is a class of refactoring tools that perform basically
the same kind of transformation on different kinds of code and can be grouped under
the term Extraction Refactorings. These refactorings can be applied when a complicated
code snippet should be abstracted such that the code becomes more readable and self-
explanatory. Depending on the properties of the concerned code the new abstraction is
for example a method or a value definition but the initial intention remains the same.
This observation led us to the idea to create a new refactoring tool that combines and
unifies these extraction refactorings. A user should no longer have to remember which
of the available extraction tools suites his needs but has only to tell the IDE that he
wants to extract the selected code snippet.

Figure 0.1.: The Eclipse JDK refactoring menu. Probably only a few developers know
what kind of transformation is exactly performed by each of these refactoring
tools.

ii

Result

We have designed and implemented a set of refactoring tools for code extraction that
use a work flow closer to a conversation between the developer and the IDE:

1. Select a code snippet to refactor

2. Invoke the refactoring tool that matches your intention

• The tool proposes several concrete refactorings that are applicable on the
selected code

3. Select one of the concrete refactoring

• The tool applies the changes automatically to the code in the editor window

4. Review the applied changes in the editor window

• If the code does not matches your expectations undo the refactoring

• If the code requires further refinement, modify it accordingly or use a supple-
mentary refactoring tool to improve the result

The refactoring starts with the intention of the user like “I want to extract this piece
of code” and the tool proposes concrete applicable transformations. There are no more
modal dialogs that require you to make many configuration decisions to tell you in the
end that this particular refactoring can not be applied automatically. Furthermore, the
refactoring tool performs only the error prone and labor intensive parts of the refactoring
without distracting you by asking for minor details that can easily be applied manually
to the transformed code (e.g. the visibility of an extracted method).

Figure 0.2.: The new extraction assistant with three concrete extractions that can be
applied to the selected code.

iii

The following refactoring techniques are currently supported by the new extraction
tools:

Extract Value
Introduces a new value for a sequence of expressions. Similar - but more limited -
refactorings in other IDEs are Extract Constant and Extract Local Variable.

Extract Method
Creates a new method definition based on the selected code.

Extract Parameter
Adds a new parameter to an enclosing method whose default value becomes the
original expression.

Extract Extractor
Creates a new extractor object based on a selected pattern in a case statement.

While the Extract Value and Extract Method tools were already available in Scala
Refactoring the new implementations are more flexible because they also allow to choose
the target scope where the new value or method should be inserted. Furthermore, the
new versions of these tools are more consistent in how they handle certain edge cases.

Figure 0.3.: After the extraction illustrated in Figure 0.2. the extraction tool is invoked
once again on a string literal for further refinements. In this example the
assistant proposes also the extraction into a new parameter.

iv

Contents

1. Introduction 1

2. New Refactoring Techniques 3
2.1. Extract Closure . 3

2.1.1. Motivating Example . 4
2.1.2. Mechanics . 5

2.2. Extract Extractor . 5
2.2.1. Motivating Example . 6
2.2.2. Mechanics . 7

2.3. Extraction Refactorings . 8

3. More Permissive and Universal Refactoring Tools 10
3.1. Unobtrusive and Simple User Interfaces 10
3.2. Do One Thing and Do It Well . 11

4. The Extraction Tools 12
4.1. Extraction Targets . 12
4.2. Inline Renaming . 14
4.3. Inbound and Outbound Dependencies . 15
4.4. Extract Value Tool . 16

4.4.1. Extraction of Value Definitions . 17
4.4.2. Extraction of Anonymous Functions 17
4.4.3. Mutable Variables . 18
4.4.4. Side Effects . 18

4.5. Extract Method Tool . 18
4.5.1. Method Parameters . 19
4.5.2. Reassigned Variables . 19

4.6. Extract Parameter Tool . 20
4.7. Extract Extractor Tool . 21

4.7.1. Patterns in Scala . 21
4.7.2. Abstracting over Patterns with Extractors 23
4.7.3. Automated Extraction of Extractors 24

4.8. Extract Code Tool . 26
4.8.1. Detection of Side Effects . 27
4.8.2. Collecting Applicable Extractions 28

v

Contents

5. A Modular Refactoring Architecture 30
5.1. Status Quo . 30
5.2. Refactoring Modules . 31

6. Additional Refactoring Components 34
6.1. Scope analysis . 34

6.1.1. Scope Trees . 34
6.1.2. Limitations . 36

6.2. Import analysis . 36
6.2.1. Print Missing Qualifiers . 39
6.2.2. Copy Missing Import Statements 40

6.3. Enhanced Selections . 40
6.3.1. Expansions . 40
6.3.2. Inbound and Outbound Dependencies 41

6.4. Testing . 42

7. Integration in Scala IDE 45
7.1. Extraction Actions . 45
7.2. Extraction Selection Assistant . 45
7.3. Testing . 46

8. Conclusion 47
8.1. Accomplishments . 47
8.2. Limitations and Possible Enhancements 48
8.3. Further Tools . 49

8.3.1. Change Method Signature . 49
8.3.2. Move Member . 49

8.4. Acknowledgments . 50

A. User Guide for the Extraction Refactorings I

B. Bibliography IV

vi

1. Introduction

The inital objective of this term project was to add further refactoring tools to the Scala
Refactoring library [Sto10] and to integrate them in Scala IDE for Eclipse [Sca]. The
implementation of the following refactorings was targeted:

Extract Closure
Extracts an expression and creates a new closure method.

Extract Superclass
Extracts methods and attributes from a class or object and inserts these in a new
superclass or supertrait.

Pull Up and Push Down Member
Moves methods and attributes of classes up or down in the class hierarchy.

Extract Extractor
Creates a new extractor based on a selected pattern in a case statement and re-
places the pattern by a call to the extractor.

Toggle Inferred Types
Shows or hides optional inferred type annotations.

During the analysis of the current state of the Scala Refactoring library and the
Extract Closure refactoring it emerged that this refactoring shares many aspects with
the already implemented Extract Method and Extract Local. Therefore, a self-contained
implementation of Extract Closure was no longer a reasonable option because it would
have led to redundant and poorly maintainable code.

Further studies of several refactorings as those described in [FB99] and [Ker04]
revealed a category of refactorings that share a common work flow and can be termed
Extraction Refactorings. All extraction refactorings introduce a new abstraction for a
specific code fragment and replace the fragment by a call to this abstraction.

Based on these findings we formed the concept of a refactoring tool that proposes
extractions depending on the selected code in the source code editor. In contrast to cur-
rent implementations of extraction refactorings, this tool provides a unified and minimal
workflow. By clicking the according menu item or invoking the hot key command the
user opens a code extraction assistant menu as shown in Figure 1.1. This menu proposes
applicable extractions and highlights the scope in which the selected extraction takes
place. After the user selects an extraction it is applied to the source code. Finally, the
user can rename the newly introduced abstraction right in the editor window.

1

CHAPTER 1. INTRODUCTION

Figure 1.1.: Code extraction assistant

In chapter 2 we first describe the not yet documented refactorings techniques Extract
Closure and Extract Extractor and define the term Extraction Refactoring as it is used
in this report. The subsequent chapter 3 covers the core concepts that are used to im-
plement the new refactoring tools based on recent studies on how automated refactoring
tools are actually utilized. In chapter 4 we analyze the individual extraction tools, what
kind of transformations they perform and what edge cases must be considered. chap-
ter 5 explains the architectural concepts that we use to implement the individual but
composable refactoring tools as it is necessary to offer a uniform invocation method.
The supportive components for code analysis and transformation that were required for
the implementation are described in chapter 6 and finally we give an outlook on how the
concepts used for the extraction tools can be applied to other refactorings in chapter 8.

2

2. New Refactoring Techniques

The initial objective of this project included, amongst others, the implementation of
two refactorings called Extract Closure and Extract Extractor. Because there exists no
specification for both refactorings so far, they are described in a more detailed level in
this chapter. Additionally, we describe the category of extraction refactorings and how
the term is used in this report.

2.1. Extract Closure

Because people referring to the term “Closure” do not always have the same concept in
mind, we first define how this term is used in this report. A closure is a function that cap-
tures references to variables from an enclosing local scope in its execution environment.
The following example demonstrates the concept:

def mkCounter() = {

var c = 0

def inc(n: Int) = {

c += n

c

}

inc _

}

val inc1 = mkCounter()

val inc2 = mkCounter()

inc1(7) // returns 7

inc2(5) // returns 5 not 12

As we see, the variable c in the local scope of mkCounter is bound in both functions
inc1 and inc2. But because c is enclosed in separate execution environments calls to
inc1 and inc2 do not increase the same state. Scala also has a shorter notation for
anonymous functions such that the mkCounter method can also be defined as following:

def mkCounter() = {

var c = 0

(n: Int) => {

c += n

c

}

3

CHAPTER 2. NEW REFACTORING TECHNIQUES

}

While in the above examples the closure function is returned by the enclosing method,
it is also possible to define closures as local functions or methods that are only used in
the enclosing method and do not live beyond its context.

The intention to perform an Extract Closure refactoring is basically the same as for
Extract Method or Extract Local (also known as Introduce Explaining Variable). Accord-
ing to [FB99] the former is applicable if “you have a code fragment that can be grouped
together” and the later if “you have a complicated expression”. Hence, both address
long statements that decrease code readability. In languages that support closure objects
Extract Closure is an additional solution to such issues.

The situation in which one should perform an Extract Closure refactoring could be
described as “you have a complicated expression that is used with varying pa-
rameters at different places”. And the proposed solution is to put the expression
in a closure function with a meaningful name. While this seems similar to Extract
Method, the difference is that we could define closure functions as values in a local scope.
Furthermore, closure functions could access other local variables of the enclosing scopes.
Altogether, closure functions are powerful abstractions that could be defined in a very
limited scope and are therefore accessible exactly where they are used.

2.1.1. Motivating Example

The following listing demonstrates when Extract Closure is applicable:

def getOsInfo(os: String) = {

if(os.toLowerCase.indexOf("linux") != -1)

"Penguins"

else if(os.toLowerCase.indexOf("android") != -1)

"Tiny Little Robots"

}

Because this method contains some duplications and the intention behind os.toLowerCase...

is not very clear, applying Extract Closure helps to improve the code:

def getOsInfo(os: String) = {

def osIs(token: String) =

os.toLowerCase.indexOf(token) != -1

if(osIs("linux"))

"Penguins"

else if(osIs("android"))

"Tiny Little Robots"

}

If we perform an Extract Method refactoring on the example code we would achieve
a similar result, except that we have to introduce a new method in the enclosing class.

4

2.2. EXTRACT EXTRACTOR

In addition to the unnecessary wide visibility of this functionality that is probably just
used in exactly this method, we would also have to pass the os variable as an additional
argument to the new method. While this may be not a big issue in the example it could
be cumbersome to pass a long list of local variables to the extracted method.

The other possibility according to Fowler would be to “introduce an explaining vari-
able”. But in this example we would have to introduce two new variables like osIsLinux
and osIsAndroid. Hence, in this case it is not a suitable refactoring especially when
additional checks for other operation systems will be added later.

2.1.2. Mechanics

To perform the Extract Closure refactoring manually the following steps are necessary:

1. Create a new function in a scope that is visible from the original expression and
name it after the intention of the code

2. Copy the extracted code to the new function

3. Determine what dependencies should become parameters to the function and add
them to the function signature

4. Replace every usage of the dependencies in the new function by the according
parameter names

5. Replace the extracted code by a call to the new function

Because the syntax for class member methods and local methods is effectively identical
in Scala, one could also describe Extract Closure as Extract Method whereat the new
method is created in a local scope. This is why we do not continue to distinguish between
Extract Closure and Extract Method in this report and refer to both when writing Extract
Method.

2.2. Extract Extractor

Pattern matching is a language mechanism to deconstruct data objects and extract spe-
cific values [EOW07]. In Scala, pattern matching is implemented by match expressions,
which are sometimes described as “very powerful switch statements”. Every match

expression consists of at least one case statement containing a pattern and a right-
hand-side which is evaluated if the pattern matches.

Typically, pattern matching is used over instances of case classes. A common use
case and often seen example of case classes and pattern matching is transforming tree
structures respresenting arithmetic expressions as shown in the following listing:

trait Expr

case class Mult(l: Expr, r: Expr) extends Expr

case class Num(i: Int) extends Expr

5

CHAPTER 2. NEW REFACTORING TECHNIQUES

def eval(e: Expr): Int = e match {

case Mult(x, y) => eval(x) * eval(y)

case Num(i) => i

}

eval(Mult(Num(7), Num(6))) // returns 42

Additionally, patterns can be defined without case classes in extractors. Extractors
are yielded by methods called unapply that return an Option type or a Boolean. An
extractor called Adult that matches only instances of Person older than 18 could be
implemented as following:

Listing 2.1: Extractors in scala

object Adult{

def unapply(p: Person): Option[Person] =

if(p.age >= 18) Some(p) else None

}

val greeting = p match {

case Adult(a) => "Dear Sir or Madam"

case p => s"Hi ${p.name}"

}

In addition to extractors that extract a fixed number of values from an object, it is also
possible to create extractors that yield a variable number of values by using unapplySeq.
A complete overview of pattern matching and extractors in Scala is given in [Rü09].

Beside the ability to create patterns for which no case classes exists, extractors are also
usefull to abstract complicated patterns and reuse them in arbitrary match expressions.
This leads us to the Extract Extractor refactoring that is applicable if you have a
complicated pattern used in several places and proposes to move the pattern
into a new extractor object with a meaningful name.

2.2.1. Motivating Example

The transformation of arithmetic expressions is a problem often used to explain pattern
matching. In the following example we continue with this tradition and show how Extract
Extractor can be applied to abstract over patterns:

trait Expr

case class Mult(l: Expr, r: Expr) extends Expr

case class Num(i: Int) extends Expr

def simplify(e: Expr): Expr = e match {

case Mult(Num(1), x) => simplify(x)

case Mult(x, Num(1)) => simplify(x)

case e => e

6

2.2. EXTRACT EXTRACTOR

}

The simplify method in the above example takes an arithmetic expression and recur-
sively simplifies it by using predefined rules. E.g. 1 * (x + 2) becomes x + 2. Because
we cannot use the same binding x in multiple alternatives of a pattern, we have to write
for each rule a separate case statement. Hence, we have to repeat the right-hand-side of
the case statement also for identical cases. Furthermore, the pattern logic for matching
expressions that evaluate to the identity of one subexpression can not be reused. Both
issues can be addressed by introducing an Identity extractor:

// trait Expr ...

object Identity {

def unapply(e: Expr): Option[Expr] = e match {

case Mult(Num(1), x) => Some(x)

case Mult(x, Num(1)) => Some(x)

case _ => None

}

}

def simplify(e: Expr): Expr = e match {

case Identity(x) => simplify(x)

case e => e

}

2.2.2. Mechanics

To perform the Extract Extractor refactoring manually the following steps are required:

1. Create a new object named after the properties that are matched by the extracted
pattern

2. Add an unapply method which takes an instance of the type to match

3. The unapply method returns:

• a Boolean if there are no bindings in the extracted pattern.

• an Option if there is only one binding.

• an Option whose type parameter is a n-tuple if there are n bindings and
n > 1. E.g. the according unapply of the pattern Mult(Num(x), e) returns
an Option[(Int, Expr)]

4. Implement the semantics of the extracted pattern in the unapply method body.

• Return an instance of Some or true if the pattern matches.

• Return None or false otherwise.

5. Replace the original pattern by a call to the extractor.

7

CHAPTER 2. NEW REFACTORING TECHNIQUES

2.3. Extraction Refactorings

The description of refactorings in [FB99] and in this report reveals a common pattern
in some refactorings that could be grouped under the term “Extraction Refactorings”.
Each extraction refactoring has all of the following properties:

1. Part of the input to the refactoring is a code snippet that should be extracted.

2. It creates a new abstraction that somehow contains the extracted code, for instance
a new method or a new variable.

3. The new abstraction is created in a scope that is visible from the original code
snippet, for instance in the surrounding class or right before the snippet in a
method.

4. It replaces the extracted code by a reference to the new abstraction.

Testing the refactorings described in [FB99] for those properties, reveals at least the
following list of extraction refactorings:

• Extract Method

– Input is a consecutive code fragment

– Create a new method in the enclosing class

– Replace code fragment by a method call

• Introduce Explaining Variable (also known as Extract Local)

– Input is a complicated expression

– Create a new local variable before the original expression

– Replace code fragment by variable access

• Replace Method with Method Object

– Input is a long method

– Create a new class that does the same calculation

– Replace content of the method by an instantiation of a method object and
the call to its start method

• Introduce Foreign Method

– Input is an expression that extends the behavior of a class that cannot be
modified

– Create a new method with an instance of the class as its first argument

– Replace the expression by a call to the method

8

2.3. EXTRACTION REFACTORINGS

• Introduce Local Extension

– Input is similar as in Introduce Foreign Method

– Create a new wrapper class with an instance of the not modifiable class as its
single constructor argument

– Replace the expression by an instantiation of the wrapper object and a call
to the according method

• Replace Magic Number with Symbolic Constant

– Input is a literal used in an expression

– Create a constant with a meaningful name

– Replace literal by access to the constant

• Decompose Conditional (identical to Extract Method)

Because there are some refactorings described by Fowler, that also follow the extraction
pattern in some special cases, the list stated above is not complete. Additionally there
are more known refactorings as some described in [Ker04] that could be added to the
list. This includes Extract Parameter where the input is an assignment to a local field
or variable that is moved to the method’s parameter list. After that, the right hand side
of the assignment could be replaced by the access to the new parameter.

Finally we could also add the two refactorings Extract Closure and Extract Extractor
described in this chapter to the list of extraction refactorings. This gives us at least ten
refactorings that follows a common pattern.

Note that while many of the listed refactorings are named like “Extract . . . ”, “Replace
. . . ” or “Introduce . . . ”, not every refactoring with such a name falls exactly into
this pattern. For example the Extract Class refactoring does not satisfy the fourth
property of the enumeration above. Instead of replacing the extracted class members by
something, it proposes to replace every use of the extracted members by the call to the
new delegation class. Additionally there are refactorings like Extract Superclass or Pull
Up Method that just move the affected code.

9

3. More Permissive and Universal
Refactoring Tools

This chapter describes the core concepts behind the extraction tools implemented during
this project. These fundamental concepts form the base of any further design decision.

3.1. Unobtrusive and Simple User Interfaces

How We Refactor and How We Know It is an exhaustive study about how automated
refactoring tools are used in Eclipse [MHPB09]. One of the observations made in this
study is that “programmers often don’t configure refactoring tools”. The study examined
11 configuration options of the 5 most commonly used refactoring tools and observed
a change frequency of these configurations between 0% and 24%, whereas only three
configurations had change frequencies higher than 10%. Hence, many default values of
configurations are in fact almost never changed by the user.

Another observation was that “refactoring tools are underused” and many refactorings
that are supported by automated tools are often performed manually. Although the
study gives no explanation why these tools are not used more frequently. [VCN+12]
examines this question by both analyzing usage statistics of Eclipse and interviewing
participants. This study also compares the different methods Eclipse offers to invoke a
refactoring. Depending on the refactoring Eclipse has basically two different methods to
invoke refactorings. Most refactorings are accessible in the “Refactoring” menu and open
a modal dialog which offers some configuration options. Additionally, some refactorings
can be invoked using the Quick Assist menu (Ctrl + 1). The Quick Assist menu proposes
refactorings based on the currently selected code. In contrast to the refactorings invoked
over the “Refactoring” menu Quick Assist refactorings do not offer configurations in a
modal dialog and perform the refactoring instantaneous after the user selected it.

Figure 3.1.: Quick Assist menu in Eclipse JDT

10

3.2. DO ONE THING AND DO IT WELL

[VCN+12] observed that “programmers prefer lightweight methods of invoking refac-
torings like Quick Assist” over the more obtrusive counterparts in the refactoring menu.
Furthermore, it indicates that programmer tend to quickly apply refactorings and fix the
outcome afterwards in order to fit their needs. This supports the finding of the former
study that configurations in refactorings are seldom changed.

Given these findings it seems reasonable to focus the development of further refactoring
tools on lightweight invocation methods with a minimum of configuration options. In
general, the idea is to reduce the cognitive overhead of such a tool and to try not
to interrupt the user work flow. This means that we should prefer inline editing and
components like the Quick Assist menu over modal dialogs. Such a less obtrusive style
of IDE tools can also be found in other IDEs like IntelliJ IDEA [Jet] or CodeRush [Dev],
a plugin for VisualStudio.

3.2. Do One Thing and Do It Well

What is commonly called the Unix philosophy [MPT78] can also be applied to refactoring
tools: “do one thing and do it well”. In [FB99] Fowler states “Refactoring changes the
programs in small steps. If you make a mistake, it is easy to find the bug.” Furthermore,
he notes that “[. . .] the cumulative effects of these small changes can radically improve
the design.” The reason behind this policy of performing small iterative improvements
to the code rather than heavy lifts at once is the assumptions that programmers make
mistakes while refactoring. Going from one syntactically correct version of the source file
to another in minimal steps reduces the risk of introducing erroneous code and makes it
easier to reproduce what went wrong in case of an error.

This policy should be continued in the new extraction refactoring tools. Keeping an
automated refactoring as simple as possible comes with several advantages. First, it
is easier for the user to comprehend what changes have been applied by a refactoring
tool. Secondly, simple refactorings are easier to implement and less error prone. Third,
small refactorings are easily composable by the user to perform big design changes. And
finally, simpler refactorings require less user interactions and are therefore a perfect fit
to our policy of unobtrusive user interfaces.

11

4. The Extraction Tools

As described in chapter 3, we want to create refactoring tools that perform just small
transformations on the code and are easy to invoke. Additionally, we have identified a
list of refactorings following a common pattern called Extraction Refactorings. Because
those refactorings behave very similar and mostly just differ in the kind of the extracted
code and the scope where the new abstraction is going to be inserted, it is possible
to unify the according refactoring tools in a common invocation method called Extract
Code. This chapter first describes the distinct code extraction tools tailored to the Scala
language and finally how they could be composed in Extract Code.

Because this and the following chapters use many listings to demonstrate the behavior
of the extraction tools, we use the convention that code enclosed in /*(*/ and /*)*/

comments mark the selection initially made by the user before invoking the refactoring
tool.

4.1. Extraction Targets

Before performing an extraction a programmer has to know where he plans to insert
the new abstraction he is going to create. Usually there are many possible extraction
targets in different scopes for a certain extraction. A new abstraction can be inserted as
a member of the enclosing class, right before the original code, at the beginning of the
enclosing method body, and so on.

There are different strategies implemented in current IDEs that allow to select the
desired extraction target in a more or less fine grained way:

• In Eclipse JDT the extraction target is bound to the invoked extraction tool. Ex-
tract Local inserts the new variable definition right before the extracted expression.
Extract Constant on the other hand creates a new static member at the beginning
of the enclosing class. If Extract Constant is invoked inside of a nested class it
always adds the constant definition to the innermost class. A slightly different be-
havior is implemented in Extract Method as it inserts the new method right after
the method that contains the extracted code in the enclosing class. If a method
is extracted from a nested class the user can choose which of the enclosing classes
should be used as the extraction target.

• The current version of the Scala IDE for Eclipse offers with Extract Method and Ex-
tract Local two extraction refactorings with a similar implementation as in Eclipse
JDT but without the possibility to choose from nested classes in Extract Method.

12

4.1. EXTRACTION TARGETS

• IntelliJ IDEA for Java acts similar to Eclipse JDT but is more consistent as it also
allows to choose nested classes in Extract Constant.

Figure 4.1.: Extraction Target Selection in IntelliJ IDEA for Scala

• IntelliJ IDEA for Scala allows a more sophisticated selection of the extraction
target when performing Extract Method. After invoking the refactoring, it shows a
selection of possible extraction targets and highlights the according scope as shown
in Figure 4.1. Furthermore, it allows to select both method bodies as well as class
scopes as extraction targets. If the former is selected the refactoring creates a
closure method in the local scope. Extract Variable acts analog to Extract Local
in IntelliJ IDEA for Java and Extract Field is similar to Extract Constant.

• CodeRush for VisualStudio allows the selection of the extraction target for Extract
Method by moving a target picker up and down in class declaration with the arrow
keys. The target picker is illustrated as an arrow that points to the position where
the new method is inserted between two present methods.

It is striking to note, that the differences between the refactoring tools for Java and
Scala are mainly rooted in the differences between the two programming languages.
While Java only allows methods on the class level and does not (yet) support anony-
mous functions Scala is more flexible in its syntax. Because Scala allows method and
class definitions in method bodies and heavily relies on anonymous functions it is not
uncommon to see code with nested scopes several levels deep.

Another observation is the sometimes inconsistent implementation of the extraction
target selection. E.g. Eclipse JDT allows to select a nested class for Extract Method but
not for Extract Constant and IntelliJ IDEA for Scala offers a convenient scope selection
drop down for Extract Method but not for Extract Variable.

Because we want to create simple to use but powerful refactoring tools, we decided to
follow a similar approach as used in the Extract Method tool in IntelliJ IDEA for Scala.
After the user invokes an extraction the IDE proposes several possible target scopes
right in the editor window in a drop down menu similar to the Quick Assist menu. By
pressing the up and down arrow keys he can switch between the scopes. As a visual help
the currently selected scope is always accordingly highlighted in the editor. Finally, the
user chooses one of the scopes by hitting the enter key or a double click on the item in
the drop down menu.

13

CHAPTER 4. THE EXTRACTION TOOLS

To tie extraction targets to scopes seems to be a good compromise between flexibility
and convenience. It allows to fine tune the visibility of the extracted abstraction by
moving it to more or less widely accessible scopes but does not require any new and
unfamiliar UI components to navigate through the options.

The following listing demonstrates how extraction targets should be handled in the
new code extraction tools:

trait T {

object O {

def fn(is: List[Int]) = {

// Insert in Local Scope 3

if(is.length > 10)

is.foreach{ i =>

// Insert in Local Scope 2

if(i > 0) {

val j = i * 2

// Insert in Local Scope 1

println(/*(*/j + 1/*)*/)

}

}

}

// Insert in Member Scope O

}

// Insert in Member Scope T

}

All available extraction targets when extracting the marked expression j + 1 are an-
notated in the listing. We distinguish between member scopes and local scopes. Member
scopes are formed by definitions of traits, classes and objects. If the user selects a mem-
ber scope the new abstraction is always inserted after the member that contains the
original code. Local scopes are formed by methods, anonymous functions, case state-
ments, for expressions, variable definitions and blocks or - in other words - by every
kind of statement that can introduce new term names. If a local scope is selected as
extraction target the new abstraction is inserted as the last statement in the according
scope that comes before the extracted code.

4.2. Inline Renaming

Part of every extraction refactoring is to choose a name for the newly introduced ab-
straction. Thus, automated extraction tools have to offer a way to name the extracted
value, method or other kinds of abstraction.

Basically there are two distinct input methods for names in common refactoring tools.
One is to enter the abstraction name in a text field that is part of the modal dialog
window along with other configuration options. Usually, the tool also checks for collisions
in the targeted namespace and produces a warning or error message if the name is already

14

4.3. INBOUND AND OUTBOUND DEPENDENCIES

in use.
The other method is to apply the refactoring with a generated placeholder name and

let the user rename it inline right in the editor window. Because, in most cases, a
refactoring inserts the abstraction name in the definition as well as in the reference to
the abstraction that replaces the original code, a change of the name at one place must
also be applied to the other occurrences. This is usually done by using the “linked
mode” facility of the editor. Figure 4.2 demonstrates the linked mode in Eclipse. The
boxes mark the text snippets that are editable. Boxes containing the same text form a
linked group and edits are synchronized between them. Additionally, the user can switch
between groups by pressing Tab.

Figure 4.2.: Renaming of an Extracted Method in Linked Mode in Eclipse JDT

The first method is mainly useful when the new abstraction will be inserted into
another source file and the name is therefore used in two or more files. In this case the
tool can help to detect name collisions that may occur in one or another file. Because
the extraction tools described in this report perform transformations local to one file we
solely use the inline renaming method.

4.3. Inbound and Outbound Dependencies

Except for trivial cases, expressions do usually interact in some way with the surround-
ing code. When extracting such expressions it is crucial to consider these interactions
in order to not create invalid code and preserve its behavior. This is why we also in-
clude inbound and outbound dependencies of selections into the discussion of the new
refactoring tools.

Every symbol that is defined outside of a selection and referenced inside of it is an
inbound dependency. This includes symbols for both values and variables as well as
types.

object Demo {

case class Person(title: String, name: String)

def becomeADoctor(p: Person) = {

/*(*/println(s"Congratulations ${p.name}")

val dr = Person("Dr.", p.name)

println(s"Uhm...${dr.title} ${dr.name}")/*)*/

dr

}

15

CHAPTER 4. THE EXTRACTION TOOLS

}

In the above example, the marked code has several inbound dependencies: The pa-
rameter value p, the method println and the class Person. Properties of inbound
dependencies are not treated as such because they are already covered by their owner.

Outbound dependencies on the other hand are symbols defined in a selection and
used outside of it. In the above example, the value dr is an outbound dependency of
the selected code.

Symbols used in a selection that refer to values, methods or classes are either inbound
or outbound dependencies. Symbols referring to variables may become both inbound
and outbound dependencies if the variable is reassigned in the selection.

4.4. Extract Value Tool

The Extract Value tool is applicable on all statements that evaluate to a value or intro-
duce new local variables. It creates a new val definition that includes the extracted code
and replaces the original expressions by a reference to the new value. Amongst others,
Extract Value automatically performs the Introduce Explaining Variable refactoring ac-
cording to [FB99] (often called Extract Local). Because variables defined using the val

keyword are by definition immutable constants and Extract Value allows to extract into
new class members, it can also be used to perform Replace Magic Number with Symbolic
Constant (sometimes referred to as Extract Constant).

The following class definition shows how Extract Value transforms source code by
introducing new variables:

trait Bodies {

class Cylinder(r: Double, h: Double){

val surface =

// Extract Local Value

2 * PI * r * r + /*(*/2 * PI * r * h/*)*/

// Extract Value to Cylinder

}

}

In this case Extract Value offers the two possible extractions as they are annotated by
comments in the listing. The first extraction “Extract Local Value” creates a new block
that becomes the right hand side of the variable definition of surface:

val surface = {

val sideArea = 2 * PI * r * h

2 * PI * r * r + sideArea

}

The second extraction “Extract Value to Cylinder” adds a new member to the Cylinder

16

4.4. EXTRACT VALUE TOOL

class:

val surface = 2 * PI * r * r + sideArea

val sideArea = 2 * PI * r * h

Because the referenced variables r and h are not visible from trait Bodies, Extract
Value does not offer an extraction that adds a new member to the Bodies trait.

4.4.1. Extraction of Value Definitions

Scala offers also a native notation to return multiple values from one expression. There-
fore, it is also possible to apply Extract Value on a sequence of statements that contains
one or more term name definitions.

/*(*/val a = 1; val b = 2; val c = a + b/*)*/

println(b * c)

In this case, Extract Value creates a val whose right hand side returns a tuple con-
taining every value that is used outside of the extracted code. Additionally, the original
code is replaced by a multi assignment that reassigns the required values:

val extracted = {

val a = 1; val b = 2; val c = a + b

(b, c)

}

val (b, c) = extracted

println(b * c)

Note that a is not returned by extracted because there is no reference to a outside
of the extracted code.

4.4.2. Extraction of Anonymous Functions

Because functions are also objects in Scala, it is possible to apply Extract Value on
definitions of anonymous functions:

List(1, 2, 3).map(/*(*/_ * 3/*)*/)

The extraction of anonymous function requires special treatment because in most cases
the compiler can’t infer the type of the parameters of the extracted function when the
explicit type annotation is not available. This is why Extract Value must print in this
case the type annotation Int => Int:

val extracted: Int => Int = _ * 3

List(1, 2, 3).map(extracted)

17

CHAPTER 4. THE EXTRACTION TOOLS

4.4.3. Mutable Variables

If one symbol that is defined inside the extracted code and used outside of it (an outbound
dependency) is declared with the var keyword, Extract Value must ensure that the
mutability property remains in the resulting code:

/*(*/var i = 1; val j = 2/*)*/

i += j

// becomes

val extracted = {

var i = 1; val j = 2

(i, j)

}

var (i, j) = extracted // j is now also mutable

i += j

In this case, the assignment to the result of extracted uses the var keyword instead
of val because i is reassigned in a later instruction. This leads to the probably unwanted
effect that the other outbound symbol j becomes also mutable due to the refactoring.

4.4.4. Side Effects

When applying Extract Value on a selection that triggers side effects (e.g. some output
to the console), Extract Value can’t guarantee that the behavior of the program is
preserved.

object O {

def main(args: Array[String]) = {

print(1)

/*(*/print(2); 100/*)*/

}

}

In the above example, executing the application results in the output 12. But after
applying Extract Value on the marked code and selecting the enclosing object O as the
extraction target, the program prints 21. This is because the extraction moves the
expression print(2) to the initialization block of the extracted class member and is
therefore evaluated during the initialization of the class and before the body of main.

4.5. Extract Method Tool

Like Extract Value, Extract Method is applicable to every sequence of statements that
does either evaluate to a value or introduces one or more variables. It creates a new
method definition based on the selected code and replaces it by the according method
invocation. Because a method also allows parameters, extraction targets of Extract

18

4.5. EXTRACT METHOD TOOL

Method are not limited to scopes where all inbound dependencies of the extracted code
are accessible. Furthermore, Extract Method preserves the behavior of the program also
when the extracted code invokes side effects. Finally, Extract Method behaves analogous
to Extract Value when applied on anonymous functions and definitions of mutable and
immutable values.

4.5.1. Method Parameters

Our implementation of Extract Method creates a method with the minimal set of param-
eters that is required to satisfy all inbound dependencies in the selected target scope.
Furthermore, it does not offer any options to change the order of the parameters during
the refactoring as in IntelliJ IDEA and Eclipse JDT. This decision is based on the princi-
ple outlined in section 3.2 to prefer small and easily invokable refactoring tools. If there
is a need for modifying the parameter list of the extracted method, Scala Refactoring
offers separate refactorings to alter method signatures. Furthermore, the Extract to Pa-
rameter refactoring implemented during this project allows to use arbitrary expressions
in the new method as additional parameters.

Unfortunately, not every inbound dependency can be used as a parameter to an ex-
tracted method. Extract Method is only applicable if every inbound dependency is either
accessible in the target scope, it is a value declared by a val statement or it is a class
member accessor. Types, constructors and objects can not become parameters. This is
usually not an issue, because it is often not feasible to create methods that operate on
inaccessible types.

4.5.2. Reassigned Variables

One limitation of Extract Method is the handling of inbound dependencies that are used
as parameters and reassigned in the extracted code. The arising problem is demonstrated
in the following listing:

class A {

def fn = {

var a = 1

/*(*/a += 1/*)*/

a

}

}

Applying the Extract Method refactoring on the marked code with class A as the
extraction target would result in code like:

class A {

def fn = {

var a = 1

a = extracted(a)

a

19

CHAPTER 4. THE EXTRACTION TOOLS

}

def extracted(temp: Int) = {

var a = temp

a += 1

a

}

}

In this example, ‘a’ is both an inbound as well as an outbound dependency. It has to
be passed to the extracted method and must be reassigned to the result of the method
call. Additionally, the temporary value temp is required due to the immutability of
parameters in Scala.

Such extractions that require reassignments of local variables are currently not sup-
ported by Extract Method. First, they result in some additional edge cases, that are
hard to handle like methods that reassign a variable and return a value. Second, the
resulting code is not idiomatic for Scala as the language encourages a style that does
not uses mutability.

4.6. Extract Parameter Tool

Extract Parameter is mainly a complement to Extract Method and adds a new parameter
to a method based on a arbitrary expression that evaluates to a value. The refactoring
uses the extracted expression as the default value of the new parameter and does not
modify any calls to the affected method. Thus, Extract Parameter does just apply a
small and local transformation that is easily verifiable by the user. To propagate the
default value to the method invocations, he uses another (not yet available) refactoring
that globally searches for references to the method name and updates all according calls.

The extraction of anonymous functions is handled analog as in Extract Value. Be-
cause Extract Parameter does not support the extraction of expressions with outbound
dependencies, mutable variables are not an issue.

Because nested methods are not uncommon in Scala, Extract Parameter allows pa-
rameter lists of all methods that enclose the current selection as an extraction target.
Although, the extraction is only applicable if every inbound dependency is accessible in
the according parameter list.

The following example shows how Extract Parameter can be used to refactor a specific
function into a more general one:

def osIsLinux(os: String) =

os.toLowerCase.indexOf(/*(*/"linux"/*)*/) != -1

println(osIsLinux(system.osName))

Applying Extract Parameter on the marked code results in the following program:

20

4.7. EXTRACT EXTRACTOR TOOL

def osIsLinux(os: String, token: String = "linux") =

os.toLowerCase.indexOf(token) != -1

println(osIsLinux(system.osName))

4.7. Extract Extractor Tool

The Extract Extractor tool enables automatic extraction of case patterns into new ex-
tractor objects with identical semantics and replaces the original pattern by an according
call to the extractor. Because extractors are sometimes counterintuitive for programmers
not used to the concept, Extract Extractor ’s goal is to support them by proposing an
initial version of an extractor object with the correct signature of the unapply method.

4.7.1. Patterns in Scala

Patterns form something like an anti language to Scala. Like normal expressions are
compositions of a limited number of atomic components (if expressions, literals, method
calls etc.), patterns are as well compositions of some atomic elements. But what would
look like an argument when used in an expression becomes sort of a return value when
used in a pattern (therefore the “anti”).

Because there is currently no comprehensive description of all patterns, syntactic sugar
for patterns and how they are represented in the AST, we collected the information in
this section from [EOW07], the helpful overview of the AST classes in the appendix
of [Sto10] and by inspecting the ASTs generated by the Scala compiler.

A pattern is a composition of the following elements:

• Constant patterns - Are either literals like 1 or "hello" or references to im-
mutable variables as defined by val or object statements. Matches only itself and
are represented by the corresponding Literal or RefTree trees in the AST.

• Wildcard patterns - Have the form and match any value. Wildcard patterns
are represented by Ident trees with name .

• Variable binding patterns - Have the form x@p where x is a name and p is a
pattern. Matches the same values as matched by p and binds the variable x to the
matched value. Binding patterns are represented by Bind trees.

• Type patterns - Matches objects of the according type. Examples are i: Int

or : String. The former example is actually a shortcut for i @ (: Int) and
therefore a composite of a binding pattern and a type pattern. Type patterns are
represented by Typed trees.

• Constructor patterns - Are of the form C(p1, . . . , pn) where C is a case class
and p1, . . . , pn are patterns matching the constructor arguments that were used

21

CHAPTER 4. THE EXTRACTION TOOLS

to build the matched value. Constructor patterns are represented by Apply trees
where fun is a reference to the case class constructor C and args are the patterns
p1 to pn.

• Alternative patterns - Are of the form p1 | . . . | pn where p1 to pn are patterns.
Matches values that match one of the alternative patterns. Are represented by
Alternative trees.

• Extractor patterns - Have the identical form as constructor patterns E(p1, . . . ,
pn) but E is a reference to an object with an unapply method. Such objects are
also called extractors. Matches values that have the same type as the argument
of the extractor method and where its return values matches p1 to pn. Extractor
patterns are represented by UnApply trees.

• Variadic extractor patterns - Have the identical form as extractor patterns
E(p1, . . . , pn) but E is a reference to an object with an unapplySeq method.
Variadic extractor patterns are also represented by UnApply trees.

• Star patterns - Are of the form * and match remaining arguments of argu-
ment lists with variable length. For example the pattern List(head, rest @ *)

matches every list with a head element and binds the first element to head and
a sequence of the remaining elements to rest. Star patterns are represented by
Star trees and are only meaningful as a part of a constructor or variadic extractor
patterns.

• Tuple patterns - Syntactic sugar for the extraction of tuple values. Are of the
form (p1, . . . , pn) and represented internally by a TupleN constructor pattern.

Listing 4.1 shows how the described patterns can be used and combined in match
expressions. The first three cases demonstrate how the compiler distinguishes between
references to constant values and bindings to a new variable. If a name starts with a
lower-case letter, it is interpreted as a variable binding pattern. Names starting with
an upper-case letter are treated as constant patterns. To use a value whose name starts
with a lower-case letter as a constant pattern, the name must be enclosed in ticks as
shown in the third example.

Listing 4.1: Examples of patterns and composed patterns

obj match {

// A constant pattern matching any object that equals to the value of ‘None‘

case None => ???

// Matches any value and binds it to the variable ‘none‘

case none => ???

// A constant pattern matching any object that equals to the value of ‘none‘

case ‘none‘ => ???

// A type pattern

case _: Int => ???

22

4.7. EXTRACT EXTRACTOR TOOL

// A type pattern with a binding to the symbol ‘i‘ of type ‘Int‘

case i: Int => ???

// Desugared form of the above

case i @ (_: Int) => ???

// A constructor pattern referring to the case class constructor ‘Some‘

containing a constant pattern

case Some(123) => ???

// An alternative between two type patterns

case _: Int | _: Long => ???

// A variadic extractor pattern referring to ‘List.unapplySeq‘ with two

constant patterns and a star pattern; matches any list whose first two

values are 1 and 2

case List(1, 2, _*) => ???

// Does additionally bind the remaining elements to a symbol ‘rest‘ of type

‘Seq[Int]‘

case List(1, 2, rest@ _*) => ???

// Matches a list by using the cons constructor

case 1 :: Nil => ???

// Desugared form of the above

case ::(1, Nil)

// Syntactic sugar for matching tuples

case ("first", "second") => ???

// Desugared form of the above

case Tuple2("first", "second") => ???

// A binding pattern with a guard

case i: Int if i > 0 => ???

// A wildcard pattern matching all remaining cases

case _ => ???

}

4.7.2. Abstracting over Patterns with Extractors

Because patterns are composable and can therefore become arbitrary complicated, ex-
tractors are sometimes used to abstract over patterns. Thus, a complicated pattern can
be replaced by a call to an extractor with a meaningful name. Furthermore, an extractor
is a reusable abstraction and can also be unit tested.

Every pattern can be abstracted by creating an extractor that contains a match ex-
pression whose first case uses the original pattern. This is best demonstrated by an
example:

obj match {

case is @ List(1, _*) => ???

}

This pattern matches any list whose first value is a 1 and binds it to the variable is.
Abstracting the pattern into the extractor StartsWith1 leads to the following program:

23

CHAPTER 4. THE EXTRACTION TOOLS

object StartsWith1 {

def unapply(x: Any): Option[List[Any]] = x match {

case is @ List(1, _*) => Some(is)

case _ => None

}

}

obj match {

case StartsWith1(is) => ???

}

The introduced extractor reuses the original pattern in its first case statement and
returns an instance of Some containing the matched list if the parameter x matches. The
second case statement catches all remaining values and returns None to indicate that
the extractor does not match. In this example, unapply takes an argument of type Any

which is the base type of any class in Scala. Another option is to accept only instances
of the List[Any] type. In this case, the Scala compiler would only call the extractor if
obj is actually a list.

By using the following template, almost any pattern can be transformed into an iden-
tical extractor:

object <ExtractorName> {

def unapply(x: <MatchedType>) = x match {

case <OriginalPattern> => Some(<BindingsDeclaredInPattern>)

case _ => None

}

}

Placeholders are enclosed by < and >. <ExtractorName> is a name describing the
intent of the extractor. In order to preserve the behavior of the pattern in any case,
<MatchedType> must equals to the type of the expression at the left hand side of the
original match expression (obj in the above example). <OriginalPattern> has to be
replaced by the original pattern. Finally, every variable bound by the pattern must be
referenced in the Some constructor as indicated by the <BindingsDeclaredInPattern>
placeholder.

The only pattern that is not abstractable with this template is the star pattern because
it is only allowed in the argument list of constructor or variadic extractor patterns.

4.7.3. Automated Extraction of Extractors

The Extract Extractor tool uses the template described above to extract arbitrary pat-
terns. Furthermore, it allows the extraction of the complete left hand side of a case
statement including the boolean expression in the guard clause.

Like Extract Value, Extract Extractor allows every scope in which all inbound de-
pendencies of the extracted pattern are accessible as an extraction target. Concerning
outbound dependencies, it behaves somewhat different to Extract Value, as it returns

24

4.7. EXTRACT EXTRACTOR TOOL

every bound variable from the unapply method and not just those used outside of the
pattern. This solution has been chosen because the number of bound variables in a
pattern is usually not greater than three or four. Furthermore, there is no need to create
a binding in a pattern if there is no intention to use it afterwards because the variable
cannot be referenced in the pattern itself. Thus, patterns like (a, a) that reuses the
bound variable a to match only pairs with two identical values are not allowed. The
only exception to this assumption is, when a bound value is only used in the if clause
of the case statement. E.g. as in the statement case (a, b) if a == b => ??? that
actually matches tuples with two identical values.

The following listing demonstrates how Extract Extractor can be used to extract from
a pattern:

trait Math {

def simplify(e: Expr): Expr = e match {

case /*(*/Mult(1, e)/*)*/ => simplify(e)

case e => e

}

}

The extraction proposes in this case two extraction targets. One in the local scope of
the simplify method and another in the member scope of Math. Choosing the member
scope results in the following program:

trait Math {

def simplify(e: Expr): Expr = e match {

case Identity(e) => simplify(e)

case e => e

}

object Identity{

def unapply(x: Expr) = x match {

case Mult(1, e) => Some(e)

case _ => None

}

}

}

As mentioned above, Extract Extractor can also extract parts of a pattern (which
must be a pattern itself) and the complete left hand side of a case statement including
the guard clause:

trait Math {

def simplify(e: Expr): Expr = e match {

case /*(*/Add(Num(l), Num(r)) if l == -r/*)*/ => Num(0)

case e => e

}

}

25

CHAPTER 4. THE EXTRACTION TOOLS

Table 4.1.: Refactoring tools used by Extract Code

Selection Refactoring Tool

Expressions evaluating to a value Extract Value
Extract Method
Extract Parameter

Expressions with side effects Extract Method
A Pattern Extract Extractor
A Pattern with a guard Extract Extractor

In this case the template for extractors described in the last section is also applicable
but the if clause must be copied as well:

trait Math {

def simplify(e: Expr): Expr = e match {

case Zero(l, r) => Num(0)

case e => e

}

object Zero {

def unapply(x: Expr) = x match {

case Add(Num(l), Num(r)) if l == -r => Some(l, r)

case _ => None

}

}

}

This is one of the cases where the bound variables ‘l’ and ‘r’ are probably not intended
to be reused in the right hand side of the case statement but still returned by the
unapply call Zero(l, r). But this can be fixed with a relatively small effort by removing
the superfluous variable from the expression Some(l, r) returned by unapply and the
according call Zero(l, r).

4.8. Extract Code Tool

The intention of the Extract Code tool is to offer a unified invocation method for extrac-
tion refactorings and to help the user to explore the available extractions. It is invoked
by selecting an arbitrary code snippet in the editor window and pressing the assigned
keyboard shortcut or selecting the tool in the “Refactoring” menu. Afterwards, Extract
Code expands the selection to the next code snippet for which at least one extraction is
available and lists these extractions in a drop down menu. After the user chooses one
of the extractions it is applied to the program code. Finally, the user can rename the
newly introduced abstraction right inside the editor window.

Depending on the selected code, Extract Code delegates to at least one of the tools

26

4.8. EXTRACT CODE TOOL

as listed in Table 4.1. Note, that one selection can match several of the conditions. For
example the literal "abc" in the pattern List("abc") is an expression evaluating to a
value as well as a pattern because it matches an according string. In this case Extract
Code offers value extractions as well as extractor extractions.

Because several extraction tools are used to process a selection and one extraction
tool offers concrete extractions for each valid extraction target, there are usually many
possible extractions. This is illustrated in the following example:

object System{

def printOsInfo(os: String) = {

// Extract Value or Method to Local Scope

if (/*(*/os.toLowerCase().indexOf("linux") != -1/*)*/)

println("Penguins!")

}

// Extract Method to Member Scope

}

In this example there are three possibilities to perform an extraction. Extract Code
could either create a value or a method in the local scope of printOsInfo or a new
method in the member scope of System. Creating a member value in System is not
possible because the inbound dependency os is not accessible outside of printOsInfo.
Because extracting a method from an expression that triggers no side effects into a scope
with all inbound dependencies available is in most cases not the desired refactoring result,
Extract Code does prefer the value extraction if there is a method extraction and a value
extraction with the same extraction target. Thus, in the above example Extract Code
does not display the possible method extraction in the local scope of printOsInfo.

4.8.1. Detection of Side Effects

As mentioned above, the absence or presence of side effects indicates if it is more appro-
priate to extract a value or a parameterless method from a given expression.

This is illustrated by the following listing where one wants to extract the marked
expressions into a new method dropRequest of the class Service:

class Service{

var activeRequests = 0

def handle(request: String) = {

if(activeRequests > 100){

/*(*/println("Request droped")

None/*)*/

} else {

Some(expensiveCalculation(request))

}

}

}

27

CHAPTER 4. THE EXTRACTION TOOLS

The selection has no inbound dependencies that are not accessible from the Service

class and returns the value None. When ignoring the side effect triggered by the call
to println, it seems natural to extract the selection into a new value member. But
this changes the behavior of the program because println would only be called once
during the initialization of the Service instance. In order to keep the service printing
the message every time a request is dropped, the selection must be extracted into a
method.

In order to not propose extractions that may change the behavior of a program, Extract
Code searches the expressions to extract for potential side effects and proposes either a
value extraction or a method extraction if both is possible.

The heuristic used by Extract Code to detect side effects is based on the assumption
that an expression does either perform some calculation and evaluates to a value or
it triggers some side effects and returns nothing. Because in Scala every function and
expression must return a value, such an expression does actually return an object of
type Unit. Hence, the occurrence of the type Unit is a strong indicator for side effects.
Naturally, this heuristic is not perfectly accurate and does in some cases miss side effects
hidden in called method.

4.8.2. Collecting Applicable Extractions

When the user invokes Extract Code on a selection, the tool collects proposed refactorings
from every supported extraction tool. Because it is also possible that the user selected
code on which no extraction is applicable, Extract Code tries in this case to expand the
selection to the enclosing statement or expression. The algorithm used by Extract Code
to at one hand find a selection that can be extracted and at the other hand find the
according extractions by delegating to the available extraction tools is listed in Listing 4.2

Listing 4.2: Collecting applicable extractions for a given selection

Input: A selection of code, a list of supported extractionTools
Output: A list of applicableExtractions

applicableExtractions = empty list

while applicableExtractions is empty {

for each tool in extractionTools {

if tool is applicable on selection {

applicableExtractions += extractions collected by tool for selection
}

}

if selection is expandable {

selection = selection expanded to the next enclosing AST tree

} else {

return empty list

}

}

return applicableExtractions ordered by target scope

28

4.8. EXTRACT CODE TOOL

29

5. A Modular Refactoring Architecture

This chapter discusses the architecture used for the implementation of the refactoring
tools described in the previous chapter.

The analysis of the extraction tools indicates several requirements to the architecture.
First, functionality has to be highly reusable between the distinct implementations. The
extraction tools share many aspects of how specific edge cases should be processed. In
order to reduce the effort for testing these edge cases and for a consistent behavior of
the tool, one needs reusable abstractions of these aspects.

Second, as mentioned in the discussion of Extract Code it must be possible to create
composed refactoring tools that coordinate and delegate to the according implementa-
tions.

Third, a concrete refactoring proposed by a tool must not fail during its application.
This implies that all preconditions have to be checked during the preparation phase of the
refactoring. Because these checks are highly coupled to the actual transformation, they
have to be grouped together with the according implementation of the refactoring logic.
Furthermore, it should be possible to share information collected during the precondition
checks with the subsequent processing steps.

5.1. Status Quo

The Scala Refactoring library offers several implementations of various refactoring tools.
Most of these implementations extends the abstract class MultiStageRefactoring. This
class offers a common interface for refactoring tools and gives simple access to the source
generation functionalities of Scala Refactoring to convert the changes in the AST to
actual changes in the source code.

Furthermore, additional functionality is mixed in from reusable components. These
components offer convenient tools for code analysis, tree transformations and tree con-
struction. One example of such a component is the Indexes trait which offers access
to several useful functions for looking up definitions and uses of names in one or more
source files.

Figure 5.1 shows a simplified class diagram of the current implementations in Scala
Refactoring.

This design meets our architecture requirements when it comes to reusability, and
precondition checks and the execution of the transformation are grouped together in a
coherent class.

Though, this design is just partially suited for the composition of refactoring tools.
Because each sub class of MultiStageRefactoring must implement prepare() and

30

5.2. REFACTORING MODULES

Figure 5.1.: Current design of refactoring tools in Scala Refactoring

perform() in order to be an independently executable refactoring, a composed refactor-
ing tool would have to heavily use super calls to specific implementations. Furthermore,
this approach would strongly couple the composed refactoring to its components because
inheriting from another refactoring is only possible if it uses the identical types for prepa-
ration results and refactoring parameters.

5.2. Refactoring Modules

Based on the architecture requirements and the current design of the refactoring li-
brary we finally came up with the design illustrated in Figure 5.2 which is used for all
refactoring tools implemented during this project.

Figure 5.2.: Architecture used for the implementation of the new extraction tools

The core concepts of this design are ExtractionCollector and Extraction. An
Extraction is a concrete transformation of the source code like “extract the expression
2 * a at offset position 127 into a new value called aTwice that lives in the local scope
of the enclosing method”. Thus, an Extraction contains all informations required
to perform a concrete transformation including all required and optional parameters.
Because of this, instances of Extraction have to conform to a very simple interface

31

CHAPTER 5. A MODULAR REFACTORING ARCHITECTURE

consisting of the field displayName which returns a string describing the according
transformation and the method perform() which calculates and returns a list of all
required transformations to the AST. To sum up, classes inheriting from Extraction

represent the “perform” phase of MultiStageRefactoring.
Instances of ExtractionCollector on the other hand implement the “preparation”

phase of MultiStageRefactoring. An ExtractionCollector collects a list of appli-
cable, concrete refactorings for a given selection of code. E.g. the extraction collector
for the Extract Value tool analyzes the selection for inbound dependencies and returns
a list of concrete value extractions for every supported extraction target where all in-
bound dependencies are accessible. Because all collectors share the same interface and
transform a given selection into a list of instances of Extraction, a collector may also
be implemented as a composition of several different collectors as required for Extract
Code.

The Extractions trait (note the trailing s) is the base trait of every module that
offers an extraction functionality and groups extraction collectors with the accord-
ing Extraction classes. Extractions do usually offer at least one instance of an
ExtractionCollector and contain at least one Extraction class that represents the
concrete extractions returned by the collector.

Finally, the ExtractionRefactoring trait is used to adapt a specific collector to the
interface forced by MultiStageRefactoring. This allows to integrate the new extraction
tools by using the same pattern as required by the other implementations offered by Scala
Refactoring.

This design is better suited for the requirements stated at the beginning of this chap-
ter: Concrete subtraits of Extractions can reuse common functionality by mixing
in the according modules and group the extraction collectors with the corresponding
Extraction classes. Furthermore, it is possible to combine both collectors and instances
of Extraction.

Such a composition of extraction collectors can be found in the AutoExtractions

trait which implements the collector used for the unified code extraction tool Extract
Code as described in section 4.8. The following listing shows how the AutoExtraction

collector delegates to other collectors:

trait AutoExtractions extends MethodExtractions with ValueExtractions with

ExtractorExtractions with ParameterExtractions {

object AutoExtraction extends ExtractionCollector[Extraction] {

val availableCollectors =

ExtractorExtraction ::

ValueOrMethodExtraction ::

ParameterExtraction ::

Nil

override def collect(s: Selection) = {

var applicableCollectors: List[ExtractionCollector[_ <: Extraction]] = Nil

val sourceOpt = s.expand.expandTo { source: Selection =>

applicableCollectors =

32

5.2. REFACTORING MODULES

availableCollectors.filter(_.isValidExtractionSource(source))

!applicableCollectors.isEmpty

}

val extractions = applicableCollectors.flatMap { collector =>

collector.collect(sourceOpt.get).right.getOrElse(Nil)

}

if (extractions.isEmpty)

Left("No applicable extraction found.")

else

Right(extractions.sortBy(-_.extractionTarget.enclosing.pos.startOrPoint))

}

// ...

}

// ...

}

The AutoExtractions component mixes in all implemented extraction refactorings.
availableCollectors holds a list of the supported collectors. Note that ValueOrMethod
Extraction itself is also a composed collector that proposes value extractions for target
scopes with all inbound dependencies accessible and method extractions for the remain-
ing scopes or only method extractions if the selection contains (obvious) side effects.

The overridden collect() method implements the algorithm described in subsec-
tion 4.8.2 and coordinates the collecting by the supported collectors.

To provide an implementation of MultiStageRefactoring we finally have to mix in
the AutoExtractions trait into ExtractionRefactoring and register AutoExtraction
as the collector used for this refactoring:

abstract class ExtractCode extends ExtractionRefactoring with AutoExtractions {

val collector = AutoExtraction

}

This gives us the ExtractCode refactoring that conforms to the prepare() and
perform() schema as used by almost any implementation in Scala Refactoring.

33

6. Additional Refactoring Components

This chapter describes the modifications and enhancements that were made on the Scala
Refactoring library during this project.

6.1. Scope analysis

Many of the new refactoring tools require detailed knowledge of where a given symbol
is accessible. E.g. Extract Value can only insert the new value definition in scopes that
see every inbound dependency of the extracted code. In general, the extraction tools
perform queries of the form “is symbol x accessible in the scope formed by tree y?” or
less specific “is symbol x accessible at position p?” whereas p is the insertion position
of the new abstraction.

Such queries are typically performed for every inbound dependency and for every
possible target scope. In order to reduce the overhead of repeated queries for the same
symbol we decided to implement a data structure supporting such tasks.

6.1.1. Scope Trees

The data structure used for scope lookups in ScopeAnalysis is inspired by the Symbol
Table for Nested Scopes pattern described in [Par09]. This pattern proposes to build a
scope tree with a node for every scope. Each node references its outer scope such that
every symbol visible in the inner scope is also visible in the outer scope.

Because we are only interested in the symbols used in a given selection, we do not
build the complete scope tree but only the branch that represents all outer scopes of the
selection. Figure 6.1 shows the scope tree used by ScopeAnalysis for inspecting the
scopes based on the selection in the following listing:

package pkg

class A {

def fn(p1: Int, p2: Int) = {

val product = p1 * p2

/*(*/println(product)/*)*/

}

def fm(q: Int) = ???

}

class B {

34

6.1. SCOPE ANALYSIS

Figure 6.1.: A scope tree as used by ScopeAnalysis

MemberScope: pkg

... MemberScope: A

... LocalScope: p1, p2

LocalScope: product

// ...

}

The dashed lines indicate the missing branches that would have been added to a
complete scope tree as proposed in [Par09]. We distinguish between two kind of scopes:

Local Scopes
Each definition in a block introduces a new local scope. This also includes pa-
rameters, which are basically value definitions only visible in the methods body.
Because it is not possible to reference other parameters of the same parameter list
in a parameter definition, all parameters of the same parameter list form a shared
local scope (demonstrated by p1 and p2 in the above example).

Member Scopes
Packages, classes, traits and objects form member scopes. Opposed to local scopes,
symbols defined in member scopes (members) are visible everywhere in the accord-
ing scope, independent of their declaration order.

In order to query whether a symbol used in the selection is accessible at a given
position, one has to traverse the scope tree from the innermost scope to the scope that
contains the query position. If one of the traversed scopes defines the symbol, it is not
accessible anymore in the outer scopes.

Note that this approach is only feasible when the symbol is effectively accessible in the
innermost scope. This can be assumed for all symbols referenced in the selection that
was used to build the scope tree. E.g. the println symbol referenced in the selection of
the above example is not defined by any scope of the tree. Nevertheless, we know that
println must therefore be globally accessible because otherwise the example would not
compile.

35

CHAPTER 6. ADDITIONAL REFACTORING COMPONENTS

6.1.2. Limitations

Because the ScopeTree data structure was specifically designed to fulfill the requirements
of the extraction tools, there are several limitations that may limit its use for other
refactorings:

• The data structure allows only queries for symbols referenced in the selection that
was used to built the scope tree.

• The scope tree is limited to the compilation unit containing the selection.

• The scope tree consists only of the branch that leads to the scope of the selection.

• Symbols defined in base classes are currently not associated to the according mem-
ber scope.

While the former three limitations do not affect the functionality of the extraction
tools, the last bullet point can lead in some cases to invalid refactoring results. This
issue is illustrated in the following listing:

trait Base{

val i = 1

}

trait Outer{

object Inner extends Base{

def fn = /*(*/i/*)*/

}

}

Invoking Extract Value on the marked code, the tool spuriously proposes the two
extraction targets Inner and Outer because it assumes that the referenced value i is
globally accessible. But effectively applicable is only the extraction to Inner and i is
not accessible in scopes enclosing Inner.

6.2. Import analysis

When one copies an expression from one scope to another, it is possible, that one or
more symbols are not imported anymore and could not be resolved by the compiler.
This is especially an issue in Scala, because the language allows imports in blocks and
class templates. Listing 6.1 shows how the extraction of a value generates broken code
when imports are ignored.

Listing 6.1: Issue with imports when extracting expressions

object O{

def fn = {

import scala.math.Pi

36

6.2. IMPORT ANALYSIS

Pi // <- extracted expression

}

// Pi is not bound here

val extracted = Pi

}

We identified three strategies to cope with missing import statements in extracted
code. The first and seen in most refactoring implementations is to simply ignore missing
imports and shift the responsibility to fix the code to the user. While this approach is
flexible and obviously simple to implement, it results sometimes in code that requires
some labor to be fixed. Especially when the user used wildcard imports in the original
code.

The second approach is to print the whole qualifier of references that are not bound
in the new scope. In the example above, the extraction would result in a definition val

extracted = scala.math.Pi.
Finally, one could copy missing import statements at the beginning of the new ab-

stractions body. This approach has the advantage, that it results in valid code that
closely resembles the extracted code. Especially when it contains many symbols bound
by a wildcard import.

In order to increase correct refactoring results, we decided to not ignore unbound
symbols and follow either the second or third approach. Independent of the chosen
approach, this requires a tool that helps to determine where in the code a symbol is
bound by an import statement and where not. This functionality is provided by the
ImportAnalysis component.

To analyze imports used in a compilation unit or an arbitrary sub tree, we use a data
structure called ImportTree. Calling buildImportTree(rootNode) with rootNode as
the AST representing the following code builds an import tree as shown in Figure 6.2.

// Scala’s default imports:

// import scala.Predef._

// import scala.collection.immutable.List

// import scala.‘package‘

import scala.collection.mutable._

object O{

import scala.math.{Pi, E}

// ...

}

object P{

import scala.math.abs

// ...

}

37

CHAPTER 6. ADDITIONAL REFACTORING COMPONENTS

Figure 6.2.: An import tree as used by TreeAnalysis

scala.Predef.

scala.collection.immutable.List

scala.‘package‘

scala.collection.mutable.

scala.math.Pi

scala.math.E

scala.math.abs

Every import tree contains three nodes that represent Scala’s default imports. A node
represents exactly one selector of an import statement and is either a WildcardImport or
an ExplicitImport. The parent of a node is always the next visible import statement.
E.g. scala.math.abs sees scala.collection.mutable. and is therefore one of its
child nodes.

An instance of the import tree structure allows queries of the form “is symbol x
imported at position y?”. Because the Scala compiler resolves import bindings while
building the AST, there is no simple way to determine if a referenced symbol has been
imported or the programmer wrote the full qualifier. Furthermore, import selectors in
the AST contain only names which do not resemble the full qualifier name of a symbol.

The heuristic used to determine if a symbol could have been imported by a spe-
cific import selector, tries to rebuild an import statement from the symbols name and
its owners and compares it to the selector’s import statement. E.g. there are two
imports scala.collection.mutable and scala.math.Pi in a compilation unit and
we want to check if the symbol Pi is imported by one of these imports. Comparing
the name in the selector of each import with the symbol’s name we get the candi-
date scala.math.Pi. Next, we reproduce an import qualifier from the symbols owner
chain and get scala.math and we can conclude that Pi has in fact been imported by
scala.math.Pi.

While this heuristic works well for imports of package members, it fails on statements
importing object members. Beside packages, Scala also allows any immutable value as a
qualifier in an import statement [Ode13]. Many uses of this language features are found
in the scala-refactoring library in modules that require access to a compiler instance:

trait ExtractCode extends /*...*/ with CompilerAccess{

// global is a member of CompilerAccess

import global._

38

6.2. IMPORT ANALYSIS

// ...

}

Here, CompilerAccess is an adapter trait that provides a compiler instance in the
member global. Because a refactoring uses many references to members of global, the
noise in the code is heavily reduced by importing all these members. But in this case, the
import qualifier is ExtractCode.this.global and the owner chain of global members
scala.tools.refactoring.common.CompilerAccess.global and the heuristic used in
ImportAnalysis fails.

6.2.1. Print Missing Qualifiers

Initially, we tried to handle not imported symbols by explicitly printing its whole qualifier
in the refactored source code. Because the AST already contains the according qualifiers,
it is basically just a matter of forcing the source generator to print these if they are
missing. But it turned out, that it is hard to find a feasible heuristic that determines if
a qualifier needs to be printed out or not.

Part of the problem is, that the heuristic used to determine if a symbol is imported at
a new position returns in some cases false negatives, which leads to unnecessarily printed
qualifiers in the extracted code. Because users of the refactoring would have to remove
those additional qualifiers manually we want to minimize such cases. Another difficulty
is that the Scala compiler desugars many expressions and it is therefore preferred to
reuse the original representation in the code rather than to rebuild it from the ground
up [Sto10].

The following listing demonstrates the problem with rebuilding extracted expressions:

def fn = {

import scala.collection.mutable.LinkedList

LinkedList(1)

}

When extracting the expression LinkedList(1) into a scope where LinkedList is not
imported, we would have to rebuild the expression with the full qualifier scala.collection.mutable.
Because the extracted expression is internally represented as LinkedList.apply(1), the
refactoring results in the following code:

val extracted = scala.collection.mutable.LinkedList.apply(1)

def fn = {

import scala.collection.mutable.LinkedList

extracted

}

Because it is not likely that this result matches the users expectation, we need an
approach that allows to fully reuse the original code.

39

CHAPTER 6. ADDITIONAL REFACTORING COMPONENTS

6.2.2. Copy Missing Import Statements

The second approach to handle missing imports was to copy the according statements
to the beginning of the extracted abstraction’s body. It turned out, that this approach
is more robust and tends to lead to “nicer” refactoring results without unnecessarily
bloated expressions.

Applied to the example in subsection 6.2.1, the extraction leads to the following result:

val extracted = {

import scala.collection.mutable.LinkedList

LinkedList(1)

}

def fn = {

import scala.collection.mutable.LinkedList

extracted

}

6.3. Enhanced Selections

Almost every refactoring offered by Scala Refactoring takes a selection of code as its
initial input and performs further processing steps based on this information. A selection
in this sense can be described as a subsequent list of statements and/or expressions in a
given context. In Scala Refactoring selections are represented by the Selection trait in
the Selections module and are defined by a range with start and end offset in a source
file.

Because especially extraction refactorings depend heavily on the properties of the used
selection, this section describes the most important enhancements to the Selection class
made during this project.

6.3.1. Expansions

One of the first steps performed by automated refactoring tools is usually to check
whether the passed selection fulfills some conditions required to successfully apply the
desired transformations. E.g. Extract Value requires that the selection represents some-
thing that evaluates to a value and does not work on type references or class definitions.
If the selection does not match the requirements, the tool must either stop the refactor-
ing and report an error or try to recover by finding an appropriate selection. Because
we want to offer permissive refactoring tools, we decided to follow the later approach.

The recovery strategy used for the new refactorings is to expand the selection such
that it represents an extractable code fragment. This strategy covers mainly accidentally
incomplete selections as in the following example:

if(/*(*/cond) a else b/*)*/

40

6.3. ENHANCED SELECTIONS

The above selection does select the three expressions cond, a and b. If we would
apply Extract Value on these expressions, the resulting value definition would be rather
meaningless:

val extracted = { cond; a; b }

More likely is, that the user intends to extract the if expression as a whole. Thus,
the extraction tools must expand such selections to get a valid input.

In order to support expansions of selections, several methods have been added to the
Selection trait whereas expand is probably the most important. expand “normalizes”
selections such that:

• A selection always encloses at least one AST tree

• Empty selections are expanded to the nearest tree (according to its position in the
source file)

• No tree is partially selected

6.3.2. Inbound and Outbound Dependencies

Scala Refactoring already offers with the TreeAnalysis trait a facility to analyze selec-
tions for inbound and outbound dependencies. These implementations use the index to
lookup whether a symbol used inside the selection is declared outside of it (inbound) or
whether a symbol declared in the selections is referenced afterwards (outbound). Be-
cause building the index is a rather expensive operation and not necessary for every
refactoring, we replaced the index dependent implementations by new ones that does
not require any index lookups.

The index independent implementations are based on the following observations:

Inbound Dependencies
As mentioned before, inbound dependencies are symbols defined outside of the
selection and used inside of it. This implies, that every symbol used and not
defined in the selection must be an inbound dependency. Rather than to check
if the definition of the symbol is somewhere else (via the index) it is therefore
sufficient to check if the definition is not part of the selection. This can easily be
accomplished by collecting all definitions in the selected trees.

Outbound Dependencies
To detect outbound dependencies, one has to distinguish between local and global
accessible symbols. Global symbols are symbols representing packages, classes,
traits, objects and members. All other symbols are only accessible in the local
scope (function parameters, definitions in blocks and bindings in case statements).
If we assume that global symbols are always outbound dependencies, only local
symbols remain. Because the scope of local symbols is limited to the block in
which they are declared, they can only be referenced after the definition in the

41

CHAPTER 6. ADDITIONAL REFACTORING COMPONENTS

same block or in one of its subtree. Therefore, in order to determine if a symbol
defined in a selection is a local outbound dependency, one has only to search the
children of the enclosing block after the selection for references to the symbols.
This principle is demonstrated in Listing 6.2.

Listing 6.2: Accessibility of local symbols in Scala

{

// println(a) // forward reference to ‘a‘ not allowed

/*(*/val a = 1/*)*/

// possible references to ‘a‘ from here

println(a)

{

println(a)

}

} // no references to ‘a‘ possible

6.4. Testing

Scala Refactoring already comes with a rich test suite that covers both the implemented
refactoring tools as well as the individual components for analysis, tree construction and
code printing and has been steadily expanded during this project. This way, the particu-
lar functionalities of the supporting components are well tested on the unit level and their
integration and interaction is also covered in the particular tests of the implementations.

This is especially convenient during debugging because a bug can easily be repro-
duced in a new integration test which in turn is used to track it down to the erroneous
component. After the bug is fixed and unit tested, one can verify the fix and affirm
that the changes did not accidentally result in further bugs. The only disadvantage is
that small changes in the specification of a component may lead to a large amount of
failing integration tests. While this is not an issue for components whose behavior can
accurately be described (e.g. finding occurrences of a symbol via indexes), it becomes
very labor intensive for components with weaker specifications.

This applies mainly to the source generation components. When transforming a mod-
ified AST back to a representation in Scala source code, there are almost uncountable
possibilities of how this transformation can be done and none of them is clearly right
or wrong (as long as it results in syntactically correct code). Especially the handling of
layout (whitespace and comments) is rather unpredictable. This is demonstrated by the
following test from the ExtractLocalTest class (Extract Local is a simpler implemen-
tation of the Extract Value tool described in this project):

@Test

def extractValRhs = new FileSet {

"""

object Demo {

42

6.4. TESTING

def update(platform: String) {

val s = /*(*/platform/*)*/

}

}

""" becomes

"""

object Demo {

def update(platform: String) {

val plt = /*(*/platform

val s = plt/*)*/

}

}

"""

} applyRefactoring(extract("plt"))

The mini DSL used in the integration tests allows to specify a set of source files
associated with the expected results via the becomes method (see [Sto10]). The selection
made by a hypothetical user - which becomes the initial input of the refactoring - is
annotated by /*(*/ and /*)*/ comments. These comments would not exists in the
according “real life” code and it is unlikely that comments arranged in this way are often
used in genuine code. Hence, it is fairly irrelevant where those comments exactly end up
in the refactoring result. In fact, predicting what exactly happens to these annotations
is rather hard because this heavily depends on how the Scala compiler calculates the
position of an AST node in the source file and may change with future releases of the
compiler. Also internals of the implementation can subtly influence the exact position
of those comments. For example if a new AST gets an associated position of an existing
tree, it may happen that a comment that was adjacent to the existing tree is printed
next to the new one.

Because correcting these arbitrary changes of the selection annotations or other minor
differences to the layout all over again after unrelated changes of internal components is
cumbersome and time consuming, we decided to mainly focus on the semantical modi-
fications to the source files rather than to compare them character by character in the
integration tests.

This is done by slightly enhance the integration test DSL with two additional methods
assertEqualTree and assertEqualSource. The following test case from the ExtractValueTest
class demonstrates how the former of these methods can be used:

@Test

def extractFunction = new FileSet{

"""

object Demo {

List(1, 2, 3).map(i /*(*/=> i + /*)*/1)

}

""" becomes """

object Demo {

List(1, 2, 3).map(extracted)

43

CHAPTER 6. ADDITIONAL REFACTORING COMPONENTS

val extracted: Int => Int = i => i + 1

}

"""

}.performRefactoring(extract("extracted", 0)).assertEqualTree

assertEqualTree applies the refactoring to the source file, reparses the result and calls
the toString method on the reparsed AST to get the uniform string representation
offered by the Scala compiler. The expected source is also parsed and serialized by
using toString. Finally, the two strings are compared. This way, we ensure that
the refactoring produces correct code (otherwise the parser would report an error) and
check if the semantics of the result match our expectations. But the tests are more
robust against changes to the Scala compiler and minor modifications of implementation
internals.

Technically it would be sufficient to compare the reparsed AST of the refactored source
to the AST of the expectation. But comparing two AST by traversing all children and
check if their properties are equal is not as trivial as one would intuitively think because
AST nodes are not implemented as pure value objects and usually contain contextual
information that should not be asserted (e.g. positions). Furthermore, producing a
readable report of the not matched trees in case of an assertion error is another issue.
This is why we use toString on the reparsed AST. toString produces a Scala like,
desugared representation of the AST including all inferred types and implicitly applied
modifiers and constructors. The following listing shows the output of toString applied
to the AST of the expectation of the above test:

package <empty> {

object Demo extends scala.AnyRef {

def <init>(): Demo.type = {

Demo.super.<init>();

()

};

immutable.this.List.apply[Int](1, 2, 3).map[Int,

List[Int]](Demo.this.extracted)(immutable.this.List.canBuildFrom[Int]);

private[this] val extracted: Int => Int = ((i: Int) => i.+(1));

<stable> <accessor> def extracted: Int => Int = Demo.this.extracted

}

}

Differences between the actual and the expected AST are now conveniently reported
in the same way as JUnit compares other strings and even highlighted when using the
JUnit Eclipse plugin.

If the exact outcome of the refactoring is crucial for the user experience one has still the
options to use assertEqualSource which compares the refactoring outcome character
by character to the expected source. This may come in handy when one wants to test if
the refactoring did not accidentally print out the desugared form of an expression (e.g.
in for-comprehensions).

44

7. Integration in Scala IDE

This chapter describes how the extraction refactoring tools are integrated into Scala IDE
for Eclipse. The integration is done according to the already implemented refactoring
tools described in [Sto10].

7.1. Extraction Actions

Because all extraction refactorings use exactly the same work flow, the UI logic is entirely
implemented in the common base trait of all extraction actions ExtractAction. This
trait coordinates the following tasks:

• Initialize the refactoring implementation and provide it with the Scala compiler
instance and the current selection in the editor.

• Generate a placeholder name for the extracted abstraction

• Expand the selection in the editor according to the selection that is actually pro-
cessed by the refactoring

• Revert the selection if the refactoring is aborted

• Display the extraction selection assistant

• Apply the refactoring result to the editor window

• Enter linked mode for in line renaming of the extracted abstraction and eventually
its parameters

• Display an error message if no applicable extraction has been found

Opposed to most of the currently available refactoring tools, the extraction tools do
not display any wizard pages. Furthermore, all of the currently implemented extractions
perform only changes local to one compilation unit. This is why the Eclipse Language
Toolkit (LTK) is only used for displaying error messages.

7.2. Extraction Selection Assistant

To display the extractions proposed by an extraction tool as described in chapter 3, we
implemented the custom UI component CodeSelectionAssistant. This assistant offers
the following functionality:

45

CHAPTER 7. INTEGRATION IN SCALA IDE

• Displays a drop down similar to the Eclipse quick fix menu with several items

• Each item is associated with a snippet of code in the current editor window

• The code that is associated with the currently selected item is highlighted in the
editor

In order to implement this functionality we extended the ContentAssistant compo-
nent of the JFace library. Because ContentAssistant offers no callbacks to listen on
changes of the currently selected item, we had to implement a custom content assists pro-
cessor that yields instances of ICompletionProposal. This interface defines a method
getAdditionalProposalInfo() that gets called every time a user selects the item in
the drop down and is meant to supply additional information displayed in a window
right next to the content assistant. By using this method to invoke selection callbacks
it became possible to highlight the according code snippet on selection changes.

While this implementation misuses the content assists in some aspects, it is the only
way to provide the required functionality without reimplementing the whole component.

To highlight the selected code snippet we use a marker type called codeSelection

which is configured in Scala IDEs plugin.xml and may be customized by the user via
the preferences menu.

7.3. Testing

Developing IDE plugins is one of the rare occasions that allows to use the product while
creating it. Therefore, we continuously deployed a custom build of Scala IDE including
the new extraction tools and installed the plugin in our development environment.

Using the extraction tools while developing them offered several benefits. First, it
allows to test the tools on a real life code base instead of only the toy examples used for
the integration tests. Because we had to work both on the Scala Refactoring and the
Scala IDE projects, we had also the chance to see how the tools handle fairly different
programming styles. While Scala Refactoring relies more on a functional style with none
or mere local side effects, Scala IDE is tightly bound to the Eclipse framework and uses
therefore many imperative aspects of Scala like loops, reassigned variables and stateful
classes.

Additionally, one gets immediate feedback concerning the user experience and perfor-
mance. For example the initial implementation of the Extract Method tool displayed a
dialog for modifying the parameters of the new method. While using the tool in pro-
duction it emerged that the dialog is mostly disturbing and that choosing configuration
options in a dialog that hides the concerned code is rather hard. This led to the idea of
the more lightweight concept used for the further implementation.

Because the integration layer in Scala IDE is rather small and almost the whole code
covers UI interaction, we decided to not use additional automated tests for this layer.

46

8. Conclusion

This final chapter covers the results of this project and describes how the concepts used
for the extraction refactoring tools may be applied to other refactoring tools in Scala
IDE to create a powerful tool suite.

8.1. Accomplishments

With this project we show that powerful automated refactoring tools must not necessarily
be complex. We’ve created tools for a specific class of refactoring techniques (extractions)
that require minimal user interaction but are more flexible than many comparable tool
suites in other IDEs. The tools are based on the following core concepts:

Minimal Configuration
The only configuration options of all extraction tools is the selection of the target
scope and the in-line renaming of the extracted abstraction.

Minimal User Interfaces
All user interactions are embedded in the editor window and have therefore a rather
small cognitive footprint.

Minimal Refactoring Steps
Every refactoring performs a small transformation that is easily comprehensible
by the user.

The tools implemented during this project are Extract Value, Extract Method, Extract
Parameter, Extract Extractor and a tool composed of the former four called Extract
Code that offers a uniform invocation method for all extraction tools. With Extract
Extractor we’ve created a novel tool that supports the automated abstraction of patterns
and gives users new to the pattern matching constructs an easy start to the sometimes
counterintuitive syntax of extractors.

Finally, we made some contributions to the Scala Refactoring library that may become
an important part of further refactoring tools:

Mini Framework for Modular Refactorings
The described architecture for the extraction tools is technically also applicable to
other refactoring tools if their work flow fit to the concept of proposing a small
number of applicable transformations.

47

CHAPTER 8. CONCLUSION

Enhanced Selections
The additions made to the Selections component simplifies the inspection of user
selections.

Scope Analysis
The scope analysis component may also be convenient for other tools that move
code from one scope to another (e.g. Pull Up, Push Down, Extract Class etc.).

Import Analysis
Import analysis is interesting in similar situations as scope analysis. This compo-
nent may also be used to improve the pretty printer which does currently print the
full qualifier of type references even if the according type name is already bound by
an import statement. Furthermore, Organize Imports could use the import analysis
in order to also support import statements in classes and local scopes. Currently,
this refactoring considers only imports listed at the beginning of a compilation
unit.

8.2. Limitations and Possible Enhancements

While the new extraction tools are ready to use at the current state, there is still room
for improvement:

• As mentioned in section 6.1 the scope analysis component does currently not cover
symbols inherited from base classes. Though, this has only impact on few extrac-
tions it may lead to incorrect refactoring results.

• The heuristic used for detecting side effects to decide whether a value or a method
extraction is more appropriate is rather primitive and does not cover concepts like
Future and Try.

• When the body of an anonymous function that is a single expression becomes a
block due to an extraction, the additionally required curly braces are arranged
in the style of () => {...} while { () => ... } is commonly considered as a
nicer style.

• The source code generation component is not yet perfect. During this project
we fixed many issues concerning invalid printed code but there are probably still
some bugs left. Especially Scalas syntactic sugar for for-comprehensions, right
associative methods, infix operators, tuples etc. makes it relatively hard to always
generate correct code while reusing the untouched expressions.

Extract Code currently allows to abstract over expressions and patterns but not over
types. Thus, there are still some extractions left that would nicely fit into the extraction
tools:

48

8.3. FURTHER TOOLS

Extract Type Alias
Creates based on a selected type a new type member or local type alias. This may
be useful for introducing explaining names for composed types like Either[String,
List[Int]]

Extract Extension
Creates a new implicit class with an extension method based on a selected expres-
sion or adds the method to an existing implicit class. Fowler describes a similar
refactoring Introduce Local Extension (see [FB99] and section 2.3).

8.3. Further Tools

The concepts used to implement the extraction tools can also be transfered to other
refactoring tools that commonly make use of heavy modal dialogs. Such tools would
also consist of several minimal tools unified in a single invocation method that bundles
coherent refactorings.

8.3.1. Change Method Signature

Refactoring tools that support the automated modification of method signatures do suc-
cessfully reduce the labor required to apply such changes to globally accessible methods.
They usually propagate the changes to all calls of the concerned method in the same
project or workspace. Additionally, they can be used subsequently to the Extract Method
refactoring to customize the generated method signature.

Scala Refactoring offers currently implementations for Change Parameter Order, Merge
Parameter Lists and Split Parameter List and all three are also integrated in Scala IDE.
Unfortunately, the invocation of these refactorings is currently only possible via the
“Refactoring” menu and it can take up to several seconds until the required index cal-
culations are performed and the dialog is finally displayed.

A Change Method Signature tool that uses a selected parameter as its input and pro-
poses a list of changes applicable to this parameter (“Move p after q”, “Split parameter
list after p” etc.) would probably be a handy complement to the Extract Code tools.

Another useful parameter list refactoring would be Inline Default Parameter Value
that propagates default parameter values to the actual method calls and may be used
subsequent to Extract Parameter.

8.3.2. Move Member

Another class of refactorings that may be grouped in a uniform invocation method
are tools that move class members in the class hierarchy. This includes for example
Pull Up and Push Down Member, Extract Superclass, Extract Supertrait and Move to
Companion. All of these refactorings have in common, that they have to track the
dependencies between the members to move and the remaining members and let the user

49

CHAPTER 8. CONCLUSION

choose how these dependencies should be resolved (either by moving them accordingly
or by introducing abstract members).

8.4. Acknowledgments

I would like to thank Prof. Peter Sommerlad and Mirko Stocker for their continuous
feedback during the weekly meetings and their valuable advices.

50

A. User Guide for the Extraction
Refactorings

The extraction refactorings offer automated extraction of almost arbitrary code frag-
ments into new methods, values or even extractor objects. All you have to remember
is that when you want to extract something you have to select it, hit Cmd + Alt + E

and the assistant guides you through the available extractions. Naturally, each of the
refactorings is also invokable over the refactoring menu.

Figure A.1.: The extraction tools in the Refactoring menu of Scala IDE

An extraction creates a new abstraction (value, method etc.) with the identical behav-
ior as the selected code and replaces the selection by an according call to this abstraction.
Extractions are typically useful to make the code more readable and to allow the reuse
of a code fragment in other places.

“Extract. . . ” proposes based on the selected code one or more of the following extrac-
tions:

Extract Value
Creates a new val definition from the selected code and replaces the selection by
a reference to the new value

Extract Method
Creates a new method (def) from the selected code and replaces the selection by
the according call

I

APPENDIX A. USER GUIDE FOR THE EXTRACTION REFACTORINGS

Extract Parameter
Adds a new parameter to an enclosing method whose default value is the selected
code and replaces the selection by a reference to the new parameter

Extract Extractor
Creates a new extractor object based on a selected pattern in a case statement and
replaces the pattern by an according call to the new extractor

After invoking “Extract. . . ” a drop-down opens that contains a list of available ex-
tractions. When you select one of the extractions with the Up and Down keys the scope
in which the extraction creates the new abstraction is highlighted green. Additionally,
if you select only a part of an expression that can be processed by “Extract. . . ” the
selection is automatically expanded such that you see what exactly will be extracted.

Figure A.2.: The extraction selection assistant. The code marked green represents the
target scope of the selected extraction.

When you found the extraction that you want to become applied you can choose it
by hitting Enter and the extraction tool performs the according transformations to the
source code. Finally, Eclipse enters the linked mode that allows you to rename the new
abstraction right in the editor window. If you extracted a method with parameters you
can also jump to the parameters by hitting Tab and rename them as well.

The extraction refactorings offer many useful features:

• Only one shortcut for all kinds of extraction refactorings

• Lets you precisely choose the scope in which you want to create the new abstraction

II

Figure A.3.: Inline renaming of an extracted method and its parameter

• “Extract. . . ” helps you to choose the right extraction by analyzing the selected
code

– If the code triggers no side effects. . .

∗ it proposes a value extraction for every scope in which all variables ref-
erenced in the selection are accessible

∗ and a method extraction for every scope in which at least one of these
variables is not accessible anymore

∗ and a parameter extraction for every method that encloses the selection

– If the code triggers side effects. . .

∗ it proposes only method extractions

– If the code is a pattern in a case statement. . .

∗ it proposes extractor extractions

• All tools support idiomatic features of the Scala language

– Extraction of higher order functions

– The resulting code uses type inference when possible

– Extraction into local closure methods

– Multiple return values with tuples

III

B. Bibliography

[Dev] DevExpress. Coderush. [Online; https://www.devexpress.com/Products/CodeRush/].

[EOW07] Burak Emir, Martin Odersky, and John Williams. Matching objects with
patterns. In ECOOP 2007 – Object-Oriented Programming, volume 4609 of
LNCS, pages 273–298. Springer, 2007.

[FB99] M. Fowler and K. Beck. Refactoring: Improving the Design of Existing Code.
Object Technology Series. Addison-Wesley, 1999.

[Jet] JetBrains. Intellij idea. [Online; http://www.jetbrains.com/idea/].

[Ker04] Joshua Kerievsky. Refactoring to Patterns. Pearson Higher Education, 2004.

[MHPB09] Emerson Murphy-Hill, Chris Parnin, and Andrew P. Black. How we refactor,
and how we know it. In Proceedings of the 31st International Conference
on Software Engineering, ICSE ’09, pages 287–297, Washington, DC, USA,
2009. IEEE Computer Society.

[MPT78] M. D. McIlroy, E. N. Pinson, and B. A. Tague. Unix Time-Sharing System
Forward. Technical report, Bell Laboratories, March 1978.

[Ode13] Martin Odersky. The scala language specification version 2.8. Technical
report, 2013.

[Par09] Terence Parr. Language Implementation Patterns: Create Your Own
Domain-Specific and General Programming Languages. Pragmatic Book-
shelf, 1st edition, 2009.

[Rü09] Michael Rüegg. Pattern matching in scala. Technical report, 2009.

[Sca] ScalaIDE. Scala ide for eclipse. [Online; http://scala-ide.org/].

[Sto10] Mirko Stocker. Scala refactoring. Technical report, IFS, 2010.

[VCN+12] Mohsen Vakilian, Nicholas Chen, Stas Negara, Balaji Ambresh Rajkumar,
Brian P. Bailey, and Ralph E. Johnson. Use, disuse, and misuse of automated
refactorings. In Proceedings of the 2012 International Conference on Software
Engineering, ICSE 2012, pages 233–243, Piscataway, NJ, USA, 2012. IEEE
Press.

IV

	Introduction
	New Refactoring Techniques
	Extract Closure
	Motivating Example
	Mechanics

	Extract Extractor
	Motivating Example
	Mechanics

	Extraction Refactorings

	More Permissive and Universal Refactoring Tools
	Unobtrusive and Simple User Interfaces
	Do One Thing and Do It Well

	The Extraction Tools
	Extraction Targets
	Inline Renaming
	Inbound and Outbound Dependencies
	Extract Value Tool
	Extraction of Value Definitions
	Extraction of Anonymous Functions
	Mutable Variables
	Side Effects

	Extract Method Tool
	Method Parameters
	Reassigned Variables

	Extract Parameter Tool
	Extract Extractor Tool
	Patterns in Scala
	Abstracting over Patterns with Extractors
	Automated Extraction of Extractors

	Extract Code Tool
	Detection of Side Effects
	Collecting Applicable Extractions

	A Modular Refactoring Architecture
	Status Quo
	Refactoring Modules

	Additional Refactoring Components
	Scope analysis
	Scope Trees
	Limitations

	Import analysis
	Print Missing Qualifiers
	Copy Missing Import Statements

	Enhanced Selections
	Expansions
	Inbound and Outbound Dependencies

	Testing

	Integration in Scala IDE
	Extraction Actions
	Extraction Selection Assistant
	Testing

	Conclusion
	Accomplishments
	Limitations and Possible Enhancements
	Further Tools
	Change Method Signature
	Move Member

	Acknowledgments

	User Guide for the Extraction Refactorings
	Bibliography

