Scaps: Type-Directed AP
Search for Scala

Lukas Wegmann, 1plusX; Farhad Mehta, HSR;
Peter Sommerlad, HSR: Mirko Stocker, HSR

HOCHSCHULE FUR TECHNIK

FHO Fachhochschule Ostschweiz

“A Hoogle for Scala”
Scaps: Type-Directed AP
Search for Scala

Lukas Wegmann, 1plusX; Farhad Mehta, HSR;
Peter Sommerlad, HSR: Mirko Stocker, HSR

HOCHSCHULE FUR TECHNIK

FHO Fachhochschule Ostschweiz

Outline

* Why types for APl search?

* Fingerprint Evaluation Model
* Type Fingerprints

* Query Expression Trees

e Conclusion

Claim: It's hard to discover functionality
N Scala libraries

Claim: It's hard to discover functionality
N Scala libraries

* Functional programming allows library designers to
provide a large number of useful abstractions

* Java.util.List: ~30 members

 gcala.collection.immutable.List; ~150 members

Claim: It's hard to discover functionality
N Scala libraries

* Functional programming allows library designers to
provide a large number of useful abstractions

* Java.util.List: ~30 members

 gcala.collection.immutable.List; ~150 members

* Types are often open for extensions for third parties
* Implicit conversions

o Utility objects

Vision

Use type information from the editor’'s context to discover
ibrary functionality

Scala Editor 1 X

def summarize(members: List[Person]): String = {
val names = members.map(_.name)
join(names, ", ")| Create Method "join" A

} names.mkString(", "): String

names.mkString(", ", ???: String, ???: String): String

Search for "join: (List[String], String) => String"

Objective

FiInd a model that retrieves values from Scala libraries
by types and keywords.

Objective

Find a model that retrieves values from Scala
ibraries by types and keywords.

Public Public Public
Values Methods Constructors
Private T
Members =

Objective

Find a model that retrieves values from Scala libraries
by types and keywords.

Existing retrieval models do..
* not support subtyping
* neglect parametric polymorphism

e or limit search to current scope

Objective

FiInd a model that retrieves values from Scala libraries
by types and keywords.

Query:
A =>B

Potentially Useful Implementations:
A=>X=>B8B
Al => B It A <: Al
A =>B1If Bl <: B
A => X[B]
X[A] => B
(X => A) => B
Promise[B1] => Promise[A1] If A <: A1, B1 <: B

Objective

FiInd a model that retrieves values from Scala libraries
by types and keywords.

pi: Double
max: Double
print: String => Unit

log: String => Unit

Test Collection

* > 60 queries mined from StackOverflow and personal
experience

=" stackoverflow

Scala: join an iterable of strings

A, Howdo " join" an iterable of strings by another string in Scala?

78 val thestrings = Array(“a","b","c")
val joined = 22?
A 4 println(joined)

| want this code to output a,b,c (join the elements by “.").

e Covering
o Scala Standard Library

* Scala-Refactoring

Baseline: TF-IDF

* |ndex types by terms:
 Avalue of type List[A] => Option[A]

e consists of the terms List, ?, Option, ?

* Use type signatures as returned by scalac
o Also index inherited members

 Roughly what you see in Scaladoc

 Apache Lucene to index and retrieve values and doc
comments

Evaluation: TF-IDF

All Queries (Mean)

Keyword
matches

remove: List[A] => A => List[A]

List[A]l => (List[A], List[A]) No subtyping

List[A] => Option[A]

List[Future[A]] => Future[List[A]]

(List[Int], String) => String

* Average Precision

Outline

 Why types for APl search?

* Fingerprint Evaluation Model
* Type Fingerprints

* Query Expression Trees

e Conclusion

Type Fingerprints

* Decompose types into atomic, independent terms

* Ordering of terms and structure are not relevant

Type Fingerprints

* Decompose types into atomic, independent terms

* Ordering of terms and structure are not relevant

* Allows the use of common text retrieval techniques

e TJerm vectors
* |nverted indexes

e Relevance statistics similar to TF-IDF

Type Fingerprints

Array[A]l.mapFirst(A => B) => Option[B]

\/

{ -Array, o?, -=>, +Nothing, -Any, +Option, +Nothing }

« Member, method and constructor types are normalized

e Variance annotations +, - and o (Co-, contra- and
invariant)

* Type parameters substituted by upper/lower bound or o7

Type Fingerprints

* Distinguish between types that can be read, written
or both

° FP(A => Array[A] => A) — { _A7 _Array’ OA’ +A}

Type Fingerprints

Distinguish between types that can be read, written
or both

° FP(A => Array[A] => A) — { _A7 _Array’ OA’ +A}

Capture relaxed equivalence relations and similarities

e |somorphisms: FP(A => B => C) = FP((A, B) => C)
o Boxing: FP(A => B) c FP(C[A] => D[B])
e QOrdering: FP(A => B => C)=FP(B => A => ()

e Type Param Names: FP(f[A, BI: A => B) = FP(f[X, Y]: X =>Y)

Evaluation: Fingerprints

APl APl

All Queries (Mean)

remove: List[A] => A => List[A]

List[A]l => (List[A], List[Al)
Type params and
common types
are more specific

List[A] => Option[A]

List[Future[A]] => Future[List[A]] Subtyping &

Implicit
(List[Int], String) => String | | Conversions

Outline

 Why types for APl search?

* Fingerprint Evaluation Model
* Type Fingerprints

* Query Expression Trees

e Conclusion

Query Expression Trees

 What terms are relevant to a query?

* Also terms derived through subtyping/implicit conversions

* E.g., It A extends B, fingerprints with -B should also be
considered for a query A => _

Query Expression Trees

 What terms are relevant to a query?

* Also terms derived through subtyping/implicit conversions

* E.g., It A extends B, fingerprints with -B should also be
considered for a query A => _

e Similarity function for types

* Just comparing term vectors does not capture structure of
types

* FEvaluate QET derived from query with retrieved fingerprints

Query: String => Set[Int]

Structure

Hierarchy &
Conversions / \ \
—String —Any +B1tSet +Nothing
0.45 0.1 / \ 0.4 0.07

+Set

Relevance 0.25

Scores
/Int

0.22 0.02

Fetch Fingerprints with Dominant
Terms

CD 0 \
—Any +B1t Set +Nothing
\ 0.07

/Int
0.22 0.02

Score Retrieved Fingerprints

. -String, —Any, +Set, /String

—Any @ +B1t Set +Nothing

0.1 \ 0.4 0.07
0.45
Global / \ 0 25

optimization
: Penalize non- —0.1

problem

/Int matching
0.22 o 02 terms 0-6

Evaluation: FEM

APlz APl

All Queries (Mean)

Tradeoff between
remove: List[A] => A => List[A] . keyword and type
matching

List[A] => (List[A], List[A])

List[A] => Option[A] Subtyping &

Implicit
List[Future[A]] => Future[List[A]] CONversions

(List[Int], String) => String , _ Overly
specific

queries

Outline

 Why types for APl search?

* Fingerprint Evaluation Model
* Type Fingerprints

* Query Expression Trees

e Conclusion

Conclusion

 The model is not yet ready for...

* Type Classes (e.g. as used in Scalaz)

e Structural Subtyping

Conclusion

 The model is not yet ready for...

* Type Classes (e.g. as used in Scalaz)

e Structural Subtyping

* Some performance issues when considering
extremely large inheritance hierarchies

* E.g.:_ => TraversableOnce[TraversableOnce[_]1]

Conclusion

 The model is not yet ready for...

* Type Classes (e.g. as used in Scalaz)

e Structural Subtyping

* Some performance issues when considering
extremely large inheritance hierarchies

* E.g.:_ => TraversableOnce[TraversableOnce[_]1]

* Depends on definition-side variance annotations

scala-search.org

® ® @ Scaps: Scala AP! Search x |\ +

4 ~

(' i) scala-search.org/?7q=List{A]l+%3D>+String+%30D>+String&m=o0rg.scala-lang%3Ascala-library%3A2.11.7&m=0rg.scalaz%3Ascalaz-core_2.11%3A7.1 (&

Q | List[A] => String => String|

scala-library:2.11.7 scalajs-dom_sjs0.6_2.11:0.8.0 scalajs-library_2.11:0.6.2 scalaz-core_2.11:7.1.1

List[A].mkString(String): String 0.78178555
Displays all elements of this list in a string using a separator string.
params
sep
the separator string.
returns
a string representation of this list. In the resulting string the string representations (w.r.t. the method toString) of all
elements of this list are separated by the string sep .
example
List(1, 2, 3).mkString("|") = "1]|2|3"
=) scala.collection.immutable. List. mkString
Doc - & This is what i've been looking for

17 more results matching mkString: _=> _=>

scala.Console.readLine(String, Anyx): String 0.74239314

=) scala.Console.readLine

Doc - #& This is what i've been looking for

2 more results matching readLine: _=> *=>

http://scala-search.org

10.

Top Search Queries

flatmap

max: Int

\/

max: (Int, Int) => Int
(@]

traverseU

List => Int => Option
map

Ordering[String]

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

List[A] => Int => Option[A]
(Int, Int) => Int
/:

<K[*>

max: Int => Int => Int
Int => Int
List[T] =>T

max

Thank You!

scala-search.org

github.com/scala-search/scaps

luegqg.qgithub.io

http://scala-search.org
http://github.com/scala-search/scaps
http://luegg.github.io/

