
Scaps: Type-Directed API
Search for Scala

Lukas Wegmann, 1plusX; Farhad Mehta, HSR;
Peter Sommerlad, HSR; Mirko Stocker, HSR

Scaps: Type-Directed API
Search for Scala

Lukas Wegmann, 1plusX; Farhad Mehta, HSR;
Peter Sommerlad, HSR; Mirko Stocker, HSR

“A Hoogle for Scala”

Outline

• Why types for API search?

• Fingerprint Evaluation Model
• Type Fingerprints

• Query Expression Trees

• Conclusion

Claim: It’s hard to discover functionality
in Scala libraries

Claim: It’s hard to discover functionality
in Scala libraries

• Functional programming allows library designers to
provide a large number of useful abstractions
• java.util.List: ~30 members

• scala.collection.immutable.List: ~150 members

Claim: It’s hard to discover functionality
in Scala libraries

• Functional programming allows library designers to
provide a large number of useful abstractions
• java.util.List: ~30 members

• scala.collection.immutable.List: ~150 members

• Types are often open for extensions for third parties
• Implicit conversions

• Utility objects

Vision

Use type information from the editor’s context to discover
library functionality

Objective

Find a model that retrieves values from Scala libraries
by types and keywords.

Objective

Find a model that retrieves values from Scala
libraries by types and keywords.

Public
Methods

Public
Values

Public
Constructors

Private
Members Types

Objective

Find a model that retrieves values from Scala libraries
by types and keywords.

Existing retrieval models do..

• not support subtyping

• neglect parametric polymorphism

• or limit search to current scope

Objective

Find a model that retrieves values from Scala libraries
by types and keywords.

A => X => B
A1 => B if A <: A1
A => B1 if B1 <: B

A => X[B]
X[A] => B

(X => A) => B
Promise[B1] => Promise[A1] if A <: A1, B1 <: B

Query:
A => B

Potentially Useful Implementations:

Objective

Find a model that retrieves values from Scala libraries
by types and keywords.

pi: Double

max: Double

print: String => Unit

log: String => Unit

Test Collection

• > 60 queries mined from StackOverflow and personal
experience

• Covering
• Scala Standard Library

• Scala-Refactoring

Baseline: TF-IDF

• Index types by terms:
• A value of type List[A] => Option[A]

• consists of the terms List, ?, Option, ?

• Use type signatures as returned by scalac
• Also index inherited members

• Roughly what you see in Scaladoc

• Apache Lucene to index and retrieve values and doc
comments

AP* I2

All Queries (Mean) 0.66

remove: List[A] => A => List[A] 1

List[A] => (List[A], List[A]) 1

List[A] => Option[A] 0.58

List[Future[A]] => Future[List[A]] 0

(List[Int], String) => String 0.14

Evaluation: TF-IDF

Keyword
matches

No subtyping

* Average Precision

Outline

• Why types for API search?

• Fingerprint Evaluation Model
• Type Fingerprints

• Query Expression Trees

• Conclusion

Type Fingerprints

• Decompose types into atomic, independent terms
• Ordering of terms and structure are not relevant

Type Fingerprints

• Decompose types into atomic, independent terms
• Ordering of terms and structure are not relevant

• Allows the use of common text retrieval techniques
• Term vectors

• Inverted indexes

• Relevance statistics similar to TF-IDF

Type Fingerprints

Array[A].mapFirst(A => B) => Option[B]

{ -Array, ○?, -=>, +Nothing, -Any, +Option, +Nothing }

• Member, method and constructor types are normalized

• Variance annotations +, - and ○ (Co-, contra- and
invariant)

• Type parameters substituted by upper/lower bound or ○?

Type Fingerprints

• Distinguish between types that can be read, written
or both
• FP(A => Array[A] => A) = { -A, -Array, ○A, +A }

Type Fingerprints

• Distinguish between types that can be read, written
or both
• FP(A => Array[A] => A) = { -A, -Array, ○A, +A }

• Capture relaxed equivalence relations and similarities
• Isomorphisms: FP(A => B => C) ≈ FP((A, B) => C)

• Boxing: FP(A => B) ⊂ FP(C[A] => D[B])

• Ordering: FP(A => B => C) = FP(B => A => C)

• Type Param Names: FP(f[A, B]: A => B) = FP(f[X, Y]: X => Y)

AP I2 AP I3

All Queries (Mean) 0.66 0.67

remove: List[A] => A => List[A] 1 1

List[A] => (List[A], List[A]) 1 1

List[A] => Option[A] 0.58 1

List[Future[A]] => Future[List[A]] 0 0

(List[Int], String) => String 0.14 0.2

Evaluation: Fingerprints

Type params and
common types

are more specific

Subtyping &
Implicit

Conversions

Outline

• Why types for API search?

• Fingerprint Evaluation Model
• Type Fingerprints

• Query Expression Trees

• Conclusion

Query Expression Trees

• What terms are relevant to a query?
• Also terms derived through subtyping/implicit conversions

• E.g., if A extends B, fingerprints with -B should also be
considered for a query A => _

Query Expression Trees

• What terms are relevant to a query?
• Also terms derived through subtyping/implicit conversions

• E.g., if A extends B, fingerprints with -B should also be
considered for a query A => _

• Similarity function for types
• Just comparing term vectors does not capture structure of

types

• Evaluate QET derived from query with retrieved fingerprints

Query: String => Set[Int]

⊕

�

−String −Any

�

⊕

+Set �

�Int �?

+BitSet +Nothing

Structure

Type
Hierarchy &
Conversions

0.45 0.1 0.4 0.07

0.25

0.22 0.02

Relevance
Scores

Fetch Fingerprints with Dominant
Terms
⊕

�

−String −Any

�

⊕

+Set �

�Int �?

+BitSet +Nothing

0.45 0.1 0.4 0.07

0.25

0.22 0.02

Score Retrieved Fingerprints

⊕

�

−String −Any

�

⊕

+Set �

�Int �?

+BitSet +Nothing

E.g.: -String, -Any, +Set, /String

0.45
0.25
−0.1

0.6
Penalize non-

matching
terms

Global
optimization

problem

0.45 0.1 0.4 0.07

0.25

0.22 0.02

Evaluation: FEM
AP I2 AP I3 AP I4

All Queries (Mean) 0.66 0.67 0.79

remove: List[A] => A => List[A] 1 1 0.33

List[A] => (List[A], List[A]) 1 1 1

List[A] => Option[A] 0.58 1 1

List[Future[A]] => Future[List[A]] 0 0 1

(List[Int], String) => String 0.14 0.2 1

Tradeoff between
keyword and type

matching

Overly
specific
queries

Subtyping &
Implicit

conversions

Outline

• Why types for API search?

• Fingerprint Evaluation Model
• Type Fingerprints

• Query Expression Trees

• Conclusion

Conclusion

• The model is not yet ready for…
• Type Classes (e.g. as used in Scalaz)

• Structural Subtyping

Conclusion

• The model is not yet ready for…
• Type Classes (e.g. as used in Scalaz)

• Structural Subtyping

• Some performance issues when considering
extremely large inheritance hierarchies
• E.g.: _ => TraversableOnce[TraversableOnce[_]]

Conclusion

• The model is not yet ready for…
• Type Classes (e.g. as used in Scalaz)

• Structural Subtyping

• Some performance issues when considering
extremely large inheritance hierarchies
• E.g.: _ => TraversableOnce[TraversableOnce[_]]

• Depends on definition-side variance annotations

scala-search.org

http://scala-search.org

Top Search Queries

Thank You!

scala-search.org

github.com/scala-search/scaps

luegg.github.io

http://scala-search.org
http://github.com/scala-search/scaps
http://luegg.github.io/

