
Scaps: Type-Directed API Search for Scala

Lukas Wegmann
1plusX AG, Switzerland
wegmaluk@gmail.com

Farhad Mehta Peter Sommerlad
Mirko Stocker

Institute for Software, University of Applied
Sciences Rapperswil, Switzerland

{first}.{last}@hsr.ch

Abstract
Type-directed API search, using queries composed of both
keywords and type signatures to retrieve definitions from
APIs, are popular in the functional programming community.
This search technique allows programmers to easily navi-
gate complex and large APIs in order to find the definitions
they are interested in. While there exist some effective ap-
proaches to address type-directed API search for functional
languages, we observed that none of these have been success-
fully adapted for use with statically-typed, object-oriented
languages. The challenge here is incorporating large and uni-
fied inheritance hierarchies and the resulting prevalence of
subtyping into an API retrieval model. We describe a new
approach to API retrieval and provide an implementation
thereof for the Scala language. Our evaluation with queries
mined from Q&A websites shows that the model retrieves
definitions from the Scala standard library with 94% of the
relevant results in the top 10.

Categories and Subject Descriptors D.2.3 [SOFTWARE
ENGINEERING]: Coding Tools and Techniques

Keywords API Search and Retrieval, Polarized Types

1. Introduction
A crucial part of creating high quality software is the reuse of
existing functionality provided by in-house or third-party
programming libraries. This ensures that functionality is
not unnecessarily reimplemented and lowers the risk of
introducing erroneous behavior. Code reused over various
projects has a greater chance of being reliable since it has
been well-tested in production.

Discovering existing functionality is a task that requires
either deep knowledge of the relevant libraries, or appropri-

[Copyright notice will appear here once ’preprint’ option is removed.]

ate tools that provide convenient access to the definitions in
a library. Popular examples of such tools are code comple-
tion assistants that list the accessible members of the object
in question. Although, there are several reasons why code
completion is not always able to provide developers with a
complete picture of suitable functionality: First, the structure
of an API greatly influences the discoverability of its func-
tionality. Indirections like factories, utility classes, extension
methods and implicit conversions often hinders developers
from quickly discovering library features [4, 16]. Second, pro-
gramming in the functional style results in numerous abstrac-
tions of transformations over data structures. While it would
be favorable to provide as much of these abstractions as pos-
sible as library functions, it becomes more difficult for users
to quickly discover important features. And finally, varying
naming schemes amongst programming environments further
complicates API discovery. Developers used to names like
filter and mkString in one environment will likely have
some troubles when switching to an environment that uses
where and join for the same operations. To overcome these
problems, developers often resort to universal search engines
like Google to find a specific implementation. While these
search engines regularly provide good results, users have
to scan the result pages for suitable content. Additionally,
general search engines may retrieve outdated information
referring to an older revision of a library.

In order to alleviate these problems search engines, like
Hoogle for Haskell [8], allow searching for values based on
their type signature. Hoogle retrieves definitions related to
the query type ordered by their relevance to the query. This
assumes that developers usually know what types they have
and of what type the result should be, but do not know how
to get there. The great number of questions of the form “How
to create X from Y” on popular Q&A websites supports this
assumption.

While the idea to use types to direct API searches is
not a new one [13], there are almost no applications of this
idea outside the functional programming community, even
though such a tool would definitely be useful for object-
oriented languages, like Scala, that leverage a high level of
type safety. However, while attempting to adopt Hoogle to

1 2016/9/23

Project

Source
Files

Library
Dependencies Feature

Extraction

scalac

Lucene
Index

Query
Parser &

Resolution

Query
Expansion

Artifacts,
Classpath

Values,
Views, Types

User
Interface

Query

Type Names

Type
Retrieval

Fingerprint
Scorer

Type Query

Views,
Statistics

Text
Retrieval

Text Query

Query
Expression
Tree (QET) Matched

Values, QET

Matched
Values,
Scores

Ranked
Values

Frequency
Aggregation

Statistics

Values

Developer

Figure 1. Dataflow amongst Scaps components

Scala, we observed, that the prevalence of subtype relations
and the unified type hierarchy are major obstacles to a type
graph based approach. The type graph tends to become
more complex and the number of potentially matching types
is bigger. This is why we propose, for Scala and similar
languages, a term-based approach as discussed in this paper
and implemented by the Scaps1 search engine.

1.1 Overview
Figure 1 illustrates the architecture of the Scaps search engine
and its logical building blocks. Arrows indicate the flow of
data between the following components:

Developers The targeted user group of Scaps. Developers
maintain the project, configure and invoke the indexing
process, and issue queries.

Project The files to be indexed. This may include source
files and library dependencies. The public and global
definitions in these files constitute the API of the project
that can be searched with Scaps.

Feature Extraction Uses the Scala compiler to extract the
information required from source files and libraries. The
extracted entities are value definitions, type definitions and
type views. Scaps uses type views to represent subtyping,
implicit conversions and similar relations between types.
Additionally, each value is associated with a type finger-
print. A type fingerprint is a list of terms that characterizes
the type of a value in an unstructured form.

Lucene Index Persists extracted entities and statistics. Lucene
provides efficient retrieval of documents by terms.

Frequency Aggregation Aggregates the specificity of fin-
gerprint terms. Terms with a higher specificity occur less
frequently in a project’s API and are assumed to be more
relevant to a query.

1 http://www.scala-search.org

User Interface Provides some facility to invoke queries and
displays the list of retrieved values ordered by their
relevance to the query. Currently, a web based search
interface is available.

Query Parser & Resolution Parses a query and splits it into
a list of keywords and a type. Additionally, each type
referred to in the query type is resolved such that it
unambiguously refers to a type in the indexed API. E.g.
the query join : List⇒ String is transformed to the
type query scala.collection.immutable.List[]⇒
java.lang.String and the text query join.

Query Expansion Uses type views and statistics to deter-
mine what type fingerprint terms are relevant to a type
query. The output is a query expression tree (QET) that is
later used to score type fingerprints of retrieved values.

Type Retrieval Retrieves values with fingerprints containing
the most dominant terms in the QET.

Text Retrieval Uses Lucene’s text retrieval facilities to re-
trieve values whose name or doc comment matches key-
words in the text query. Each retrieved value is associated
with a relevance based score.

Fingerprint Scorer Evaluates the fingerprint of each re-
trieved value with the QET to assess its relevancy to the
type query and combines this score with the score of the
text retrieval.

Besides Feature Extraction, which depends on the Scala
compiler, all components and the underlying concepts are, to
some degree, agnostic to the target programming language
and not only applicable to Scala. Type fingerprints, type
views and query expression trees are part of the Fingerprint
Evaluation Model (FEM) which is discussed in more details
in section 2 to section 4. Section 5 explains how FEM
is applied to Scala’s type system. Section 6 discusses the
experimental evaluation of the quality of our model. Finally,

2 2016/9/23

section 7 reviews related work and section 8 concludes the
paper.

2. Type Fingerprints
We use some ideas of the Vector Space Model (VSM) [14]
to quickly select potentially matching types from the index
and reduce the number of types that need to be compared
to the query type. One of the basic assumptions of VSM is
that documents and queries can be decomposed into distinct
terms where each term characterizes the document or query
independently of the other terms. Hence, to find documents
that are relevant to a query, it is sufficient to only consider
what terms are used in the document. The semantic relations
between these terms are assumed to be irrelevant during the
retrieval process. Also, the order of terms does not influence
the retrieval results. This assumption allows to use a simple
representation of the documents (e.g., bag-of-words) and
fast retrieval techniques like inverted indexes. With type
fingerprints, we propose such an unstructured representation
of types.

A type fingerprint of a type T is a list of the type names
occurring in the normalized proper type T ′. Furthermore,
each type name is annotated with the variance polarity of
its position in the type. To start with an illustrative exam-
ple, the type ∀A.List[A] ⇒ Int ⇒ A of a polymorphic
function elementAt is represented by the type fingerprint
{−List,−>,−Int,+⊥} (using > and ⊥ for the top and
bottom type respectively).

The first step in the fingerprint transformation is to anno-
tate each part of a type with its variance polarity. This step is
formalized in Polarized System Obω<:µ [3]. In the following,
we use the notation +T , −T and ◦T to refer to a type T
occurring at a covariant, contravariant or invariant position
respectively and the notation T :: K to refer to a type T of
kind K. A type T used at a position with polarity p is written
as pT . The polarity of a type of a value is +. Given a type
constructor C :: ∗ p−→ ∗ with polarity p, the application C[T]
at a position with polarity q is annotated with qC[pqT]. The
composed polarity pq is given in table 1. The transformation
from a type T in a context p to an annotated type is given by
the function α(T, p):

α(C[T1, ..., Tn], p) = pC[α(T1, pq1), ..., α(Tn, pqn)]

if C :: k1
q1−→ ...

qn−→ kn (1)

α(∀X1, ..., Xn.T, p) = ∀X1, ..., Xn.α(T, p) (2)

α(T, p) = pT (3)

For example, the function type constructor ⇒ :: ∗ −−→
∗ +−→ ∗ is contravariant over the first argument and co-
variant over the second argument. Furthermore, the Scala
standard library defines type List :: ∗ +−→ ∗. Accordingly,
α(∀T.List[T] ⇒ List[T],+) = ∀T.+⇒[−List[−T],
+List[+T]].

Table 1. Composition of polarized type constructors pq [3]
◦ + −

◦ ◦ ◦ ◦
+ ◦ + −
− ◦ − +

The second step is to transform annotated types to proper
annotated types of kind ∗. This is achieved by substituting
type parameters by their upper or lower bounds respectively,
depending on their polarity. The notation T :: k(L,U) refers
to a type variable T of kind k with a lower bound L and
an upper bound U . If omitted, the bounds ⊥ and > are
implied. Occurrences of +T are substituted by +L, −T by
−U and ◦T by the unknown, polarized type ◦?. For example,
a function of type ∀T :: ∗(⊥, Num).T ⇒ T has a proper
annotated type +⇒[−Num,+⊥].

The final step is to flatten the proper annotated type to
a multiset of polarized type names. Hence, the annotated
proper type +C[−X,−X] is flattened to the fingerprint
{+C,−X,−X}. In the following, we use the notation FP(T)
to refer to the fingerprint of a type T .

Altogether, we assume that the fingerprint representation
of types retains sufficient information to characterize a defini-
tion while it allows term-wise comparison. Given a suitable
similarity function, which we will discuss in section 4.2, it
is possible to retrieve definitions of similar types to a query
type without specifying matching rules as used in [13] and
[20]. This advantage becomes more apparent when compar-
ing fingerprints of the following definitions:

FP (v1 : 1⇒ Int) = {+⇒,−1,+Int}
FP (v2 : Int⇒ 1) = {+⇒,−Int,+1}

FP (v3 : (Int⇒ 1)⇒ 1) = {+⇒,−⇒,+Int,−1,+1}
FP (v4 : (1⇒ Int)⇒ 1) = {+⇒,−⇒,+1,−Int,+1}

Both definitions v1 and v3 share the terms +⇒,−1 and
+Int. In fact, v1 and v3 behave similar from a callers point
of view. In both cases, the caller may receive a value of Int,
either immediately returned by v1 (if v1 terminates) or passed
to the callback provided as an argument to v3 (if the callback
is invoked by v3). Accordingly, v2 and v4 both consume an
Int and their similar behavior is expressed by similar finger-
prints. Along this line, other isomorphisms and relaxed equiv-
alence relations between types are sustained by the finger-
print transformation: Curried and tupled forms of functions,
e.g., {−U,−V ,+T} is a subset of both FP((U, V)⇒ T)
and FP(U ⇒ V ⇒ T). Boxed versus unboxed types, e.g.,
FP(U ⇒ V) ⊂ FP(C[U]⇒D[V]). Reordering of arguments,
e.g., FP(U ⇒ V ⇒ T) = FP(V ⇒ U ⇒ T). And, renaming
of type parameter names, e.g., FP(∀A.∀B.A⇒B⇒A) =
FP(∀X.∀Y.X ⇒ Y ⇒X).

Also, the loss of information during the fingerprint trans-
formation is less severe than one would expect at a first
glance. When applied to actual APIs, the number of finger-

3 2016/9/23

print collisions is typically small. Hence, there are only few
identical fingerprints that originated from definitions with
different types. For example, the List class in the Scala
collection library defines and inherits 177 operations with
118 distinct type signatures. After applying FP 107 distinct
fingerprints are left. From these fingerprints there are 7 de-
rived from more than one type. Furthermore, almost all of
these fingerprint collisions occur between operations that
have very similar semantics like foldLeft/foldRight and
reduceLeft/reduceRight. Collisions between unrelated
operations occur only due to methods inherited from Java’s
Object type which often have a more liberal type signature
than necessary. One such case is equals : ∀A.List[A]⇒
> ⇒ Bool and contains : ∀A.List[A] ⇒ A ⇒ Bool

where both methods share the fingerprint {+⇒,−List,−>,
+⇒,−>,+Bool}. Due to the proper type conversion it is
not possible to distinguish between the top type > in equals

and the unconstrained type parameter used at contravariant
position in contains.

3. Type Views
In order to consider subtyping relations between types, we
use type views to judge whether an annotated type in a
fingerprint is “viewable” as another annotated type. This
is achieved by introducing additional judgements of the form
Γ ` p1TBp2U which denote that “a type T used at a position
with variance p1 can be viewed as a type U with variance p2”.
Like subtyping, type views are reflective and transitive:

(V-REFL)
Γ ` pU B pU

Γ ` pU B pV Γ ` pV B pW
(V-TRANS)

Γ ` pU B pW

Furthermore, we use additional rules to derive type views
from the inheritance hierarchy:

U extends V (V-EXT-COV)
Γ ` α(V,+) B α(U,+)

U extends V (V-EXT-CONV)
Γ ` α(U,−) B α(V,−)

Thus, an inheritance declaration derives type views for
a co- and contravariant context. For example, a class def-
inition class IntList extends List[Int] derives the
type views +List[+Int] B +IntList and −IntList B
−List[−Int]. We deliberately do not derive type views from
the available subtype judgements because we want to exclude
most features of the type system like polarized application of
type constructors. This ensures that a definition like class
List[+T] extends It[T] does only derive the abstract
type view ∀U.−List[−U] B ∀U.−It[−U] and no applied
statements like−List[−Int]B−It[−>]. V-EXT-COV and
V-EXT-CONV are a consequence of the subtype rules on po-
larized type constructors discussed in [3] but with reversed

direction. This is motivated by the fact that the aim is to re-
trieve subtypes of the query type. For example, the statement
IntList :> List[Int] implies, that a query for List[Int]
can be answered with a definition of type IntList. Thus,
the terms +List and +Int in the query fingerprint can be
substituted by +IntList which is encoded by the type view
+List[+Int] B +IntList.

A type used at co- or contravariant positions may also
match the same type in an invariant context:

(V-INV-ANY)
Γ ` pU B ◦U

This rule is a consequence of the order of information
content of polarities [3]. Therefore, (V-INV-ANY) simply
considers less restricted types. For example, both terms−Int
and +Int from the queries Int⇒ Unit and Unit⇒ Int

respectively should match ◦Int derived from a definition
of type Array[Int] because the array both consumes and
produces elements of type Int.

And finally, every invariant type can be seen as the un-
known type ? in an invariant context:

(V-INV-?)
Γ ` ◦U B ◦?

This accords to the proper annotated type transformation
discussed in section 2 that maps type parameters at invariant
positions to ◦?. Thus, a query type Ref[Int] with Ref :: ∗ ◦−→
∗ should match definitions of the same type or a polymorphic
type ∀T.Ref[T] with the fingerprint {+Ref, ◦?}. The polar-
ized type ◦? is a wildcard that carries no further information
than some type in some context is expected.

Type views form a simple system to reason about subtype
relations between annotated types. This concept is necessary
to efficiently expand types to match possible subtypes of
the query type as discussed in section 4. In section 5 we
will introduce additional rules for type views that allow to
incorporate implicit type coercions into the retrieval process.

4. Query Expression Trees
A Query Expression Trees (QET) is an expanded representa-
tion of a query type. During type retrieval, a QET fulfills two
functions: First, a QET is used to identify dominant finger-
print terms that have a high relevance to the query. Second,
the fingerprints retrieved from the index with these dominant
terms are evaluated with the QET to score the relevance of
the whole fingerprint.

A query expression tree (QET) consists of three types
of nodes: sum nodes, max nodes and leaf nodes. A leaf
node represents a single fingerprint term associated with
a score that captures the relevance of the fingerprint term
to the query. For instance, +List0.6 is a leaf node with a
score of 0.6. A sum node combines subtrees that can be
matched together. During evaluation, the score of a sum tree
is the sum of the scores of all matched subtrees. For instance,
E = ⊕(+List0.6,+Int0.4,+Bool0.2) is a sum node with
three subtrees. Applying the fingerprint {+List,+Bool}

4 2016/9/23

to E yields a score of 0.8. Finally, a max node combines
alternative subtrees. The score of a max node is the score of
the subtree that matched with the highest score. For instance,
the max node�(⊕(+List0.6,+⊥0.1),+⊥0.2) with two sub-
trees yields a score of 0.7 when applied with {+List,+⊥}
and a score of 0.2 when applied with {+⊥}.

4.1 Constructing QET
A QET is constructed by applying the function QET to a
proper annotated query type pT :

QET(pT) = MAX(pT, 1) (4)

MAX(pT, f) = �{SUM(qA, fa, da) | pT B qA}

where fa = f · (1− COST(pT B qA)),

da =

0, if pT = qA

1, otherwise
(5)

SUM(pC[qT1,..., qTn], f, d) =

⊕(SUM(pC, fc, d),MAX(qT1, fc), ...,MAX(qTn, fc))

where fc =
f

1 + n
(6)

SUM(pT, f, d) = pT
s

where s = f · (1− dwd) · ITF(pT) (7)

Equation (4) defines that a QET is constructed with MAX
and an initial fraction value f of 1. Equation (5) states that
MAX of a proper annotated type pT is a �-node including all
types that are viewable from pT mapped over SUM with the
cost-adjusted fraction value fa and a distance value da.

Furthermore, eq. (6) states that SUM of a type constructor
pC with the arguments qT1 to qTn is a ⊕-node with the
type constructor without arguments applied to SUM and
the arguments applied to MAX. The fraction f is evenly
distributed over the parts created from the type constructor
pT and the arguments pTi. Equation (7) states that SUM of a
type pT without arguments is a leaf node pT s weighted with
the score s.

As defined in eq. (7), each QET leaf node is weighted with
a score composed of its fraction value f , the distance d and
the Inverse Term Frequency (ITF) of the term associated with
the node. In the following, we will further elaborate these
three statistics and motivate their use.

Fractions are motivated by the observation, that not all
leafs in a QET represent the same fraction of a query. For
example, the type views +List[+Int] B +IntList and
+IntB+⊥ expands the query type List[Int] to the follow-
ing QET:

� (⊕ (+List,� (+Int,+⊥)) ,+IntList)

While +List, +Int and +⊥ each represent half of the query,
+IntList replaces the complete original type and should
therefore be weighted accordingly with a fraction of 1.

Another issue is, that some views are destructive and
information carried in type arguments is lost by applying such
views. For example, a view derived from the Scala standard
library is ∀A.−List[−A]B−Immutablewhere Immutable
is a marker trait for immutable data structures. This view is
destructive as it does not retain information about List’s
type argument. To limit the weight of QET branches derived
from destructive view applications eq. (5) uses an adjusted
fraction fa = f · (1 − COST(pT B qA)). A good estimate
of this COST function is the number of type parameters in
the original type pT that do not occur in the alternative type
qA over the number of atomic types pT is constructed of.
Hence, COST(∀A.−List[−A] B −Immutable) is 0.5 and
COST(∀A.−List[−A] B−It[−A]) is 0.

The Inverse Type Frequency (ITF) is inspired by the
Inverse Document Frequency (IDF) statistic commonly used
by implementations of the vector space model [14]. Like
IDF, ITF should capture the specificity of a fingerprint term
such that types occurring more frequently in the document
collection can be penalized. But using the plain number
of definitions that contain a fingerprint term is not very
accurate in capturing its specificity because subtype relations
are not considered. Instead, we use a different notion of
specificity: The specificity of a fingerprint term pT is the
inverse of the probability P (pT) that the term will occur
in a query expression. Hence, terms occurring in almost all
QET expanded from arbitrary queries, like −> and +⊥,
have a relatively low specificity. To approximate a term’s
probability P (pT) we use the types of all definitions in
the document collection D as hypothetical queries. The
number of expanded QETs that include the term pT gives the
absolute document type frequency df(pT) and the probability
P (pT) = df(pT)/|D|. Finally, we define ITF as

ITF(pT) = 1− ln
(
e P (pT) +

(
1− P (pT)

))
The factor e and the term (1− P (pT)) is added to normalize
ITF in the range [0, 1]. This is not a necessity but makes it
easier to incorporate ITF in leaf scores and relate it to the
other scoring statistics.

The distance factor is used to slightly boost terms occur-
ring in the original query type over derived terms. This is
necessary, because some implicit conversions (see section 5)
derive bidirectional views such that +AB+B and +BB+A
which leads to ITF(+A) = ITF(+B) and equal scores for
definitions of type A and B if a user issues the query A. wd
in eq. (7) is a parameter to the model that determines the
penalty for derived terms.

Besides fractions, distance and ITF, we also considered
other scoring factors that did not result in the expected im-
provements of the retrieval model. One statistic that has been
tested is the inverse of the number of ⊕ nodes between the
leaf and the root of a QET. This depth statistic was motivated
by the assumption that types at a deeper nesting level are less
relevant to a user’s information need, e.g. C is less relevant

5 2016/9/23

than A or D in the type query A[B[C]]⇒D. Although, this
assumption was not supported by our evaluation results. Ad-
ditionally, we used a more sophisticated distance statistic that
incorporated the number of steps between the original term
and an alternative term in the class linearization of the type
hierarchy [11]. Later, we observed, that ITF alone is sufficient
to discriminate terms by their distance to the original type.
Because a definition contributing to the probability P (pA)
does also increase P (qB) if pA B qB, ITF(pA) is always
greater or equal to ITF(qB).

4.2 Evaluating QET
The evaluation semantics of applying a single fingerprint term
to a QET are straightforward:

EVAL1(pT,⊕(c1, ..., cn)) =

n∑
i=1

EVAL1(pT, ci) (8)

EVAL1(pT,�(c1, ..., cn)) = max{EVAL1(pT, c1), ..., EVAL1(pT, cn)}

(9)

EVAL1(pT, qUs
) =

s if p = q ∧ T = U

0 otherwise
(10)

Because addition distributes over the maximum operator
we can conclude that QETs are distributive over ⊕. Hence,
�(⊕(A,X),⊕(B,X)) = ⊕(�(A,B), X). Furthermore,∑
i∈{e} i = e and max{e} = e which allows to omit

intermediate nodes with exactly one subtree: �(⊕(A)) = A.
Those properties are useful for compressing QETs before
evaluation to reduce the number of required evaluation steps.
Especially the out-factorization of common subtrees helps to
distinctly reduce the size of QETs. In the following, we will
also implicitly apply some of those transformations to give a
more comprehensible view of example trees.

A crucial part of the Fingerprint Evaluation Model is
the function EVAL(q, f) that calculates the score of the
fingerprint f applied to the QET q. Just mapping all terms
ti in f over EVAL1(q, ti) and accumulating the resulting
scores, violates the restriction on max nodes that at most one
sub expression per �-node can contribute to the score of a
fingerprint. For example, the fingerprint {−Seq,−>,+⊥}
(derived from ∀A.Seq[A]⇒A) should yield the same score
as {−Seq,−>,−>,+⊥} (∀A.Seq[A] ⇒ A ⇒ A) when
applied to the QET given in fig. 2, even tough the latter
contains the matching term −> twice. Instead, evaluating
QETs can be seen as the optimization problem of marking
terms of the fingerprint in the QET such that the sum of the
scores of marked leafs is maximized, without violating the
evaluation semantics described at the beginning of section 4.
To efficiently solve this problem, we use an heuristic that
yields sufficiently accurate results in O(n ∗m + m logm)
where n is the size of the QET and m is the number of terms
in the fingerprint [17].

Besides differences between distinct types of definition
and query, also varying complexity between those types

⊕

�

⊕

−List1 −>0.1

⊕

−Seq0.9 −>0.1

−>0.2

�

+⊥0.05

Figure 2. QET of the query ∀A.List[A] ⇒ A; the
terms contributing to the score of the fingerprint
{−Seq,−>,−>,+⊥} are highlighted in green

can (but not necessarily should) influence the similarity
between definition and query type. For example, given a
query q : A ⇒ C with less arguments than a definition
d : A ⇒ B ⇒ C. d will not be penalized during QET
evaluation despite the superfluous argument B. A useful
metric to capture these differences is the number of distinct
fingerprint terms that can be removed from a fingerprint d
without affecting the score when evaluating a QET q with d:

PEN(d, q) =
1

wp|{t ∈ d | EVAL(d, q) = EVAL(d \ t, q)}|+ 1

This gives a factor PEN(d, q) ∈ [0, 1] that penalizes
partially matched fingerprints and is used to get an adjusted
fingerprint score:

SCORE(d, q) = PEN(d, q) · EVAL(d, q)

Note, that the given definition of PEN differs heavily from a
feasible implementation. The actual implementation requires
no additional evaluation of q and is incorporated in the EVAL
function.

4.3 Indexing and Retrieving API Definitions
To ensure fast access to API definitions, we use an index
that maps fingerprint terms to definitions. During retrieval, it
is sufficient to fetch only those definitions that are likely to
achieve good scores and evaluate the according fingerprints
against the QET. A good approximation of potentially high
scoring fingerprints is to consider only fingerprints containing
at least one of the dominant terms in the QET.

To get the dominant terms we use the list of terms occur-
ring in the QET ordered by descending associated weights.
The longest prefix of this list whose sum of type frequencies
is below a certain threshold is then considered as the list of
dominant terms. For example, the QET in fig. 2 consists of the
ordered terms {−List,−Seq,−>,−⊥}. Given according
type frequencies and a certain threshold, {−List,−Seq}
may be the prefix of dominant terms. Using type frequen-
cies to limit the number of dominant terms ensures that also
queries with relatively common types, like Int⇒ String,
and queries with very specific types will have approximately
the same number of potentially high scoring fingerprints.
Applying this technique to an index of more than 100’000
definitions reduced the number of required fingerprint eval-
uations per query to a few thousand. For larger collections,

6 2016/9/23

the frequency threshold for selecting dominant terms is also
a useful parameter to balance performance and precision of
the search engine.

5. Mapping Language Features
With FEM, we have presented a general model to retrieve
API definitions with type signatures. To demonstrate the
applicability of this model, we provide an implementation
for the Scala programming language. The implementation
defines a mapping of various language features to type
fingerprints and views.

All definitions in the value namespace of a library are
added to the index. This includes class and object members,
constructors and object definitions. The mapping of Scala
types to Polarized Obω<:µ is relatively straightforward. Be-
cause we did not yet consider higher-kinded type parameters
in our model, all type parameters are considered to be of kind
∗. Furthermore, due to Scala’s definition-site variance anno-
tations, the polarity of argument types can be determined by
looking up the definition of the according type constructors.

In order to give a unified view on class members and
global definitions, all value, method and constructor types
are mapped to according function types before passed to the
fingerprint transformation function. Thus, a method definition
def f(a: A): B is considered to be of type A ⇒ B if
defined on an object and of type C ⇒ A ⇒ B if defined
as a member of class C. Accordingly, a value val v: A is
of type A or C⇒A respectively.

By applying the view rules given in section 3, type views
are derived from all public class and trait definitions.

Furthermore, we can apply some extensions to basic FEM
to support some Scala specific language features. Especially
user-defined implicit conversions are interesting to demon-
strate the flexibility of the type view abstraction:

implicit def f(x : U) : V
(V-IMPL-COV)

Γ ` α(V,+) B α(U,+)

implicit def f(x : U) : V
(V-IMPL-CONV)

Γ ` α(U,−) B α(V,−)

Thus, an implicit conversion from A to B derives the two
type view judgements −AB−B and +B B +A.

Other language features are not yet incorporated into the
model or have been purposefully omitted. While structural
typing would be an interesting extension to the basic model,
especially with focus on other languages that solely use struc-
tural subtyping, we observed that this feature is rarely used
in Scala libraries and there was little need to apply such an
extension. Another, not yet supported, feature are implicit
parameters that are frequently used to implement the type
class pattern in Scala [9]. Currently, the implicit keyword
in parameter lists is ignored during feature extraction. As
already mentioned, also higher-kinded type parameters are
only partially implemented. This is to some extent a necessity

because full support for the combination of higher-kinded
types and subtyping enables queries that would no longer
terminate during the expansion to expression trees. Further-
more, such a high level of detail was not necessary to retrieve
results with a high accuracy from the test collection.

6. Evaluation
The implementation described in section 5 has been evalu-
ated to check whether our model and its various extensions
bring the expected improvements to the effectiveness of API
retrieval.

6.1 Methodology
We assembled a test collection of 61 queries covering two
Scala libraries: The Scala standard library (2.11.7) and scala-
refactoring (0.6.2) [15]. The standard library is an obvious
choice. It provides many useful tools like mutable and im-
mutable collections, concurrency primitives and I/O helpers.
Especially the collection part of the library provides a vast
number of operations on various types that are not necessar-
ily easy to discover. As a representative of a domain specific
library we included scala-refactoring.

Each test query is associated with a list of definitions that
are relevant to the according information need. The main
source of those information needs has been the Q&A website
stackoverflow.com and our personal experience with scala-
refactoring. To collect the sample queries, we looked for
questions tagged with “Scala” that have been answered with
a reference to one or more definitions in the standard library.
Afterwards, we formulated one or more queries that represent
the question and identified matching definitions. We also
ensured that various usage patterns are covered by the test
collection. Thus, the collection includes both navigational and
informational queries, generic and specific formulations of
the same information need (e.g. sort : Array[Int]⇒ Unit

vs. sort : Array[A]⇒ Unit) and queries using some textual
keywords or none (e.g. join : List[A] ⇒ String vs.
List[A]⇒ String).

To measure how well an instantiation answered a particu-
lar query we use the average precision (AP) metric [7] which
equals to the area under the precision/recall curve. Further-
more, the effectiveness over a complete test collection is the
mean average precision (MAP) which is the arithmetic mean
of the AP of all queries in the collection.

Because the various weighting factors of FEM influence
the effectiveness of the model, the first step of the evaluation
is to find a good parameterization. To ensure a fair comparison
we use an automated approach to train each instantiation. And,
to avoid overfitting, we randomly split the test collection
into a training and a validation set of equal size. For each
instantiation we randomly generate parameterizations and
use the training set to find the parameterization yielding
the highest MAP. Afterwards, the best parameterizations are
compared between instantiations using the validation set.

7 2016/9/23

Table 2. Evaluated instantiations of the prototype with the
according configurations; numbers in brackets denote the
range in which the according parameters are generated

N
o.

C
on

fig
ur

at
io

ns

Ty
pe

Fr
eq

ue
nc

ie
s

Po
la

ri
ze

d
Ty

pe
s

Ty
pe

V
ie

w
s

w
p

-P
en

al
ty

W
ei

gh
t

w
d

-D
is

ta
nc

e
W

ei
gh

t

D
oc

B
oo

st

I0 20 - - - - - [0,0.5]
I1 20 - on - - - [0,0.5]
I2 100 on - - [0,0.3] - [0,0.5]
I3 100 on on - [0,0.3] - [0,0.5]
I4 200 on on on [0,0.3] [0,1] [0,0.5]

Table 3. Evaluation results with the best parameterizations
for each instantiation; all parameters and results have been
rounded to two decimal places

wp wd Doc MAP R5 R10

I0 - - 0.39 0.36 0.47 0.50
I1 - - 0.39 0.44 0.52 0.59
I2 0.24 - 0.19 0.66 0.70 0.76
I3 0.26 - 0.21 0.67 0.71 0.82
I4 0.03 0.27 0.10 0.79 0.85 0.94

Table 2 lists the setup of the individual instantiations with
the ranges in which parameters are generated. No. Config-
urations states how many parameterizations are generated
and compared within one instantiation. I0 is the baseline
instantiation that is used to estimate the performance of a
simple text-based API search tool. It roughly corresponds to
applying a regular expression on the Scaladoc documenta-
tion of an API. While inherited members can be discovered,
type hierarchies are not considered in argument and result
types. Disabling polarized types in I0 causes fingerprints of
definitions and queries to be created in an invariant context
and all type parameters are mapped to ◦?. I1 extends the
baseline approach with polarized types. I2 also uses non-
polarized types but penalization of non-matching terms and
type frequencies are enabled. This corresponds to a more
sophisticated text-based approach that could be implemented
with common text retrieval techniques. I3 uses an identical
setup but with polarized types. And finally, I4 instantiates the
complete fingerprint evaluation model as presented in this
paper including type views and the distance factor.

6.2 Results
Table 3 lists the best parameterizations of each instantiation
and the scores yielded by applying the instantiations to the
validation set. Besides MAP, the table also includes recall at
5 (R5) and recall at 10 (R10) which is easier to interpret. For
example, I0 ranked 47% of the relevant results in the top 5
and 50% in the top 10. FEM increased this value to 85% and

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 random: Double (3)
 List[A] => B => (B => A => B) => B (3)
 group: List[A] => Int => List[List[A]] (2)

 List[A] => Option[A] (2)
 sort: Array[Float] => _ (3)

 Stream[Int] (1)
 Option[Option[A]] => Option[A] (1)

 (List[A], String) => String (1)
 unapply: Trees.Apply => Option (1)
 List[Future[A]] => Future[List[A]] (1)
 sort: (Array[A], Ordering[A]) => _ (2)

 (List[A], Int) => A (1)
 Ordering[Char] (4)

 distance: (Trees.Tree, Position) => _ (1)
 (List[Char], String, String, String) => String (1)

 unapply: Trees.Block => Option (1)
 String => Double (2)

 java.util.List => collection.Iterable (2)
 List => java.util.List (2)

 step: (Range, Int) => Range (1)
 (Int, Int) => Range (4)

 (List[Int], String) => String (1)
 Ordering[A] => (B => A) => Ordering[B] (2)

 Either[A, B] => Either[B, A] (1)
 (Vector[A], Int) => Option[A] (1)

 List[List[A]] => List[A] (1)
 List[A] => (List[A], List[A]) (4)

 List[A] => A (6)
 sort: Array[A] => _ (3)

 nano: Int => Duration (4)
 remove: List[A] => A => List[A] (1)

I0: Baseline I3: Weight. + Pol. I4: FEM

Figure 3. Per query comparison of the average precision
(AP) of selected instantiations; the numbers in parens indicate
how many definitions have been identified as relevant to
the query; arrows indicate how AP changes with increasing
complexity of the instantiation

94% respectively. As expected, all three scores increase with
additional features enabled (from I0 to I4).

Figure 3 compares the per query scores of I0, I3 and I4
of all 31 queries in the validation set. I0, I3 and I4 answered
19%, 52% and 61% of the queries with a perfect AP of 1.
Thus all n relevant results of a query have been listed with
ranks 1 to n. On the other hand, the fraction of queries with
AP of 0 is 19%, 6% and 3% respectively. In our setup, AP =
0 denotes that none of the relevant results have been listed in
the top 100 results. Using the Wilcoxon signed rank test we
find significant improvements on AP from I0 to I3 (p < 0.01)
and from I3 to I4 (p < 0.05).

From a performance point of view, preparing the index
from the source files and collecting the type frequency
statistics took about 3 minutes. In total, 110’888 definitions,
2’116 types and 27’091 type views have been extracted

8 2016/9/23

from the two libraries. Furthermore, the average query time
has been between 250 ms and 400 ms depending on the
instantiation. Because we used the same infrastructure for
all instantiations, a more detailed performance comparison
would not be reasonable with this setup.

6.3 Discussion
Given the data presented, we can draw the following con-
clusions: First, comparing I0 to I1 and I2 to I3 shows that
the polarity of the position at which a type is used carries
information that can be leveraged to improve the performance
of API retrieval. Second, a greater improvement in accuracy
can be achieved when incorporating type frequencies and the
penalization of unmatched terms (comparing I0 to I2 and I1
to I3). Third, type views further broaden the kinds of queries
that can be answered with API retrieval (I4).

While the data allows relative statements about the per-
formance of the system, it does not state whether the search
engine will be perceived as a useful tool by users. A clear
answer to this question would require further user studies.
Although, in our personal experience, the search engine de-
livers helpful results when working with large Scala libraries
that mainly use basic type system features like inheritance,
implicit conversions and first-order type constructors. For li-
braries that use more complex types, the quality of the search
results is less stable and a more detailed knowledge of the
library structure is necessary to formulate effective queries.

One notable result can be observed with the query
List[Future[A]]⇒Future[List[A]] whose expected result
is Future.sequence with the signature

def sequence[A, M[X] <: TraversableOnce[X]](

in: M[Future[A]])(

implicit cbf:

CanBuildFrom[M[Future[A]], A, M[A]],

executor: ExecutionContext): Future[M[A]]

This query includes many aspects that can complicate API
retrieval in Scala. First, users are likely to use the familiar
type List in the query instead of more general base types
like TraversableOnce. Second, the relevant definition uses
a highly generalized signature with the higher-kinded and
bounded type parameter M. And finally, sequence also de-
pends on the implicit context variables cbf and executor,
which further complicates the resulting fingerprint. Never-
theless, the search engine successfully retrieves the correct
definition.

The query remove : List[A]⇒ A⇒ List[A] with the
expected result diff[B >: A] : List[A]⇒ GenSeq[B]⇒
List[A] illustrates another difficulty with API retrieval: Find-
ing a good parametrization that trades off scores contributed
by keyword matches, type matches and structural matches.
In contrast to I0 and I3, I4 retrieved the expected definition
with rank 3 which results in an AP of 0.33. In this case, I4
prioritized structural matching higher than the occurrence of
the keyword remove in the doc comment of diff.

Altogether, the evaluation indicates that FEM is suitable
to answer complex API queries and precision remains high
even if the relevant definition is not a subtype of the query.

Concerning the performance of the search engine, we can
state that the response time is not impressive but sufficient for
interactive use. Experiments with a greater corpus of indexed
libraries showed that the main factor contributing to query
time is not API size but the size of the QET which depends on
the number of sub-/super-types of the individual types in the
query. This number is relatively high for classes of the Scala
collection hierarchy, for example, List has 35 supertypes and
the most generic collection type GenTraversableOnce has
352 subtypes. Other Scala libraries tend to have less complex
type hierarchies and our model performs accordingly better.

7. Related Work
The related work on API retrieval can roughly be grouped
into four topics: code completion, signature matching, code
synthesis and code snippets retrieval.

Code completion is used in integrated development en-
vironments (IDE) to display available methods that can be
invoked on a given object. Often, completion assistants also
offer some means to filter the displayed set of methods by
name or, sometimes, by return type. Depending on the fea-
tures of the target language, code completion may also in-
clude methods provided through extension methods (C#) or
implicit classes (Scala). For example, the Scala IDE Eclipse
plug-in also considers methods provided through implicit
conversions, but only if the according conversion is in scope.
Although, code completion has its shortcomings: The heavy
bias towards member methods and the limited filter capabili-
ties. Our API retrieval model supports more specific queries
and is not limited to member methods. Extensions to code
completion are the “Method Recommendation” and “Object
Construction” features introduced in [2]. The former lists
methods that accepts arguments of the type in question and
the later finds call chains that create a value of a certain type.

Signature matching describes techniques that aim to solve
the same problem as described in this paper. Although, most
previous work on this topic targets languages not providing
class-based inheritance [8, 13, 20] or use signature matching
for refining results retrieved by latent semantic analysis
[19]. Altogether, we did not find any previous work that
addresses signature matching for type systems similar to
Obω<:µ which integrates class-based inheritance with higher-
order parametric polymorphism.

The approach that offers the functionality closest to our
work is probably [12]. This tool uses partial expressions
with “holes” as search queries for C# APIs and retrieves
expressions matching these holes. For some of these partial
expression, the search problem is identical to API retrieval as
discussed in this paper but the approach does not exclusively
focus on signature matching. Also, the paper does not cover
parametric polymorphism.

9 2016/9/23

The problem addressed by code synthesis tools can be
seen as a superset of the API retrieval problem. Instead of re-
trieving definitions that can be reused to solve a common task,
code synthesis tools generate code snippets spanning multi-
ple statements. InSynth [5] suggests well-typed expressions
that can be inserted at a certain program point based on an
expected type and the definitions in scope. The programmer
does not need to provide further information besides the cur-
rent program context, but the code synthesis only considers
local and imported declarations. Prospector [6] on the other
hand, considers all declarations in a project, but the query is
restricted to a single input and a single output type.

Finally, code snippet retrieval addresses a similar problem
as code synthesis tools but use existing code to mine for
code snippets that can be retrieved. The query may be a free-
text formulation of a task [1] or a combination of a free-text
description and types from the current context [18]. A major
difference to our approach is that code snippets retrieval aims
to find example code that demonstrates the usage of an API
and API retrieval aims to retrieve reusable abstractions.

8. Conclusion
This paper shows that API retrieval can be adopted to object-
oriented languages with complex type hierarchies by using a
term based model. Our model can be used to quickly answer
information needs that would be hard to answer using code
completion.

Future work includes the integration with IDE that enables
developer to easily index Scala projects including dependen-
cies and issue queries from within the code editor. Also, a
detailed user study to assess the impact of API retrieval on
developer’s daily work would be useful. Furthermore, some
aspects of Scala are not yet fully incorporated into the model.
Especially retrieving functionality provided through the type
class pattern [10] requires some further work. And finally,
the retrieval model could be adapted to languages with type
systems similar to Scala’s, for example, Java or C#.

References
[1] Shaunak Chatterjee, Sudeep Juvekar, and Koushik Sen. SNIFF:

A search engine for java using free-form queries. In Lecture
Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics),
volume 5503, pages 385–400, 2009.

[2] Ekwa Duala-Ekoko and Martin P. Robillard. Using structure-
based recommendations to facilitate discoverability in APIs.
Lecture Notes in Computer Science (including subseries Lec-
ture Notes in Artificial Intelligence and Lecture Notes in Bioin-
formatics), 6813 LNCS:79–104, 2011.

[3] Dominic Duggan and Adriana Compagnoni. Subtyping for
Object Type Constructors. In In FOOL 6. Foundations of

Object-Oriented Languages, 1999.

[4] Brian Ellis, Jeffrey Stylos, and Brad Myers. The factory
pattern in API design: A usability evaluation. Proceedings
- International Conference on Software Engineering, pages
302–311, 2007.

[5] Tihomir Gvero, Viktor Kuncak, Ivan Kuraj, and Ruzica Piskac.
Complete completion using types and weights. Proceedings of
the 34th ACM SIGPLAN conference on Programming language
design and implementation - PLDI ’13, page 27, 2013.

[6] David Mandelin, Lin Xu, Rastislav Bodı́k, and Doug Kimel-
man. Jungloid Mining: Helping to Navigate the API Jungle.
ACM SIGPLAN Notices, 2005.

[7] Christopher D Manning, Prabhakar Raghavan, and Hinrich
Schütze. Introduction to Information Retrieval, volume 1.
Cambridge University Press, 2008.

[8] Neil Mitchell. Hoogle: Finding Functions from Types, 2011.

[9] Adriaan Moors, Frank Piessens, and Martin Odersky. Generics
of a higher kind. ACM SIGPLAN Notices, 43(10):423, 2008.

[10] Martin Odersky. Poor Man’s Type Classes, 2006.

[11] Martin Odersky and Matthias Zenger. Scalable component
abstractions. ACM SIGPLAN Notices, 40(10):41, oct 2005.

[12] Daniel Perelman, Sumit Gulwani, Thomas Ball, and Dan Gross-
man. Type-directed completion of partial expressions. Proceed-
ings of the 33rd ACM SIGPLAN conference on Programming
Language Design and Implementation - PLDI ’12, page 275,
2012.

[13] Mikael Rittri. Using types as search keys in function libraries.
Journal of Functional Programming, pages 174–183, 1991.

[14] Gerard Salton, Andrew Wong, and Chungshu Yang. A vector
space model for automatic indexing. In Communications of
the ACM, volume 18, pages 613–620, 1975.

[15] Mirko Stocker. Scala Refactoring. Technical report, University
of Applied Sciences Rapperswil, 2010.

[16] Jeffrey Stylos and Brad a. Myers. The implications of method
placement on API learnability. Proceedings of the 16th ACM
SIGSOFT International Symposium on Foundations of software
engineering - SIGSOFT ’08/FSE-16, page 105, 2008.

[17] Lukas Wegmann. Scaps: Type-directed API Search for Scala.
Technical report, University of Applied Sciences Rapperswil,
2015.

[18] Yi Wei, Nirupama Chandrasekaran, Sumit Gulwani, and
Youssef Hamadi. Building Bing Developer Assistant. Techni-
cal report, Microsoft Research; MSR-TR-2015-36, 2015.

[19] Yunwen Ye and Gerhard Fischer. Supporting reuse by deliver-
ing task-relevant and personalized information. Proceedings
of the 24th International Conference on Software Engineering.
ICSE 2002, pages 513–523, 2002.

[20] Amy Moormann Zaremski and Jeannette M. Wing. Signature
Matching: a Tool for Using Software Libraries. Transactions
on Software Engineering and Methodology, 4(April):146–170,
1995.

10 2016/9/23

