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Abstract

Reusing existing functionality from legacy code and third party programming libraries is
often hard, because the vast number of definitions and the complexity of the APIs require
a detailed knowledge of the programming environment. To help developers discovering
such functionality when working with a statically typed, object-oriented programming
language, we designed an API retrieval system that supports querying indexed APIs with
textual keywords and type signatures. The feature of the search engine is inspired by a
similar tool for the Haskell programming language called Hoogle. Though, we decided
to develop another approach to address the API search problem based on traditional
information retrieval techniques which, we argue, is better suited for object-oriented
languages.

As a proof of concept, we implemented the API retrieval system for the Scala program-
ming language and provided a web-based user interface. Furthermore, we demonstrate
how Scala-specific language features like user-defined implicit conversions and implicit
parameters can be included into our basic approach. A comparison to a system using
only exact matches of partial types of the query shows that the e↵ectiveness of API
retrieval can be substantially improved with our approach.





Management Summary

This thesis describes the design of a type directed search engine for statically-typed,
object-oriented programming languages. Furthermore, we provide an implementation
for the Scala programming language that incorporates Scala specific language constructs.

Status Quo

A crucial part of creating high quality software projects is the reuse of existing function-
ality provided by in-house or third party programming libraries. This ensures that func-
tionality is not unnecessarily reimplemented and lowers the risk of introducing erroneous
behavior. Code reused over various projects tends to be well-tested and battle-proofed.

Discovering existing functionality is a task that requires either a deep knowledge of the
according libraries or appropriate tools that provide access convenient to the definitions
in a library. Some examples of such tools are code completion assistants that list the
accessible members of an object in question and automatically generated documentation
pages for the available classes. Though, these tools tend to give an incomplete picture
of the available operations, because functionality provided through utility classes or by
additional libraries are usually not listed.

In this case, developers often resort to universal search engines like Google to find a
specific implementation. While these search engines often provide suitable results, users
have to manually mine the result pages for suitable content. Additionally, the result
pages may refer to outdated revisions of a library.

In the functional programming community, a popular tools to overcome these issues
are search engines, like Hoogle for Haskell, that accept type signatures as search queries
and retrieve definitions of a similar type. In combination with a powerful type system,
type queries can e�ciently and precisely describe the functionality a user is looking for.

Unfortunately, the algorithms used to query functional programming libraries cannot
simply be adapted to object-oriented programming languages. Especially subtype poly-
morphism, which is used more frequently in object-oriented programming, is a major
obstacle.

Goals

The goal of this thesis is to develop a search engine for retrieving definitions in Ap-
plication Programming Interfaces (API). The search engine should accept queries that
consists of zero or more full-text keywords and a type signature and return an ordered
list of identifiers that match the query. The system should be able to answer queries that
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do not exactly match the available definitions. For example, a user queries for a method
that accepts a list of string and returns the first element. But the according functionality
may be provided by a method accepting a sequence of elements of an arbitrary type. To
retrieve type signatures di↵erent from the query but with similar semantics, the retrieval
system has to incorporate concepts used in the type system of modern, object-oriented
languages. Namely, parametric and subtype polymorphism. Furthermore, we want to
index several popular libraries with a total of more than 100’000 definitions and still
provide results in less than one second.
To show the suitability of our approach, we implement the search engine for the Scala

programming language. This implementation should demonstrate that language specific
features can be incorporated into the basic algorithm and that the system is e↵ective to
discover available functionality.

Figure 0.1.: Screenshot of the Scaps web client with the query input form, library filters
and two search results

Results

We developed an API retrieval model based on the vector space model and integrated
it into the Lucene search engine. This allows us to leverage existing optimizations like
inverted indexes and in-memory caching. The search engine is managed by a web service
that exposes various operations to control the index over an HTTP API. Additionally,
the web service provides a user interface as shown in Figure 0.1 to query the index.
Furthermore, to evaluate our retrieval model, we created a test collection with more

than 50 test queries covering three Scala libraries (including the Scala Standard Library).
Each test query is associated with one or more expected relevant result. This collection
has been used to compare the e↵ectiveness of various instantiations of our retrieval model
and to verify some assumptions made during the design of the system.
Because there is currently no similar search engine available for the Scala language,

we created a baseline system that roughly corresponds to a search engine using only
textual matches to retrieve type signatures. The main result of comparing the baseline
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Figure 0.2.: Performance comparison of the baseline system and our retrieval model

system to our approach is given in Figure 0.2. The Mean Average Precision (MAP)
values show that the overall precision of the search engine over the complete result set
can be significantly improved. Perhaps more meaningful for users of the search engine
is the Recall at 10 (R

10

) value: While the baseline system retrieved only 69% of the
relevant results on the first result page (top ten results), our approach increased this
value to 85%.
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1. Introduction

This thesis introduces a new approach to retrieve entities from programming APIs. The
resulting search engine accepts a query consisting of textual keywords and a type and
returns a ranked list of identifiers of matching functions and values. The search engine is
capable of indexing several libraries with more than hundred thousand of definitions and
returning a result set in less than a second with a recall of > 0.85 in the top ten results.
Furthermore, the approach embraces both parametric and subtype polymorphism which
makes it applicable to many modern statically-typed, object-oriented programming lan-
guages.

This chapter describes the framing conditions of this thesis and states our motivation
behind creating yet another search engine for programming libraries.

1.1. Problem

Working with complex APIs and big projects requires a deep knowledge of available
functions, classes, methods and other artifacts. Writing source code without this in-
formation often leads to duplicated functionality or even worse, to erroneous code for
which already exists a well-tested implementation. This is why good and well-structured
documentation is essential for introducing developers to the provided functionality of li-
braries, legacy code and frameworks. But even if an exhaustive documentation is present,
developers often do not have the time or patience to read through it or would simply
not expect that the feature they are looking for is already available.

Beside documentation, IDEs also try to help developers exploring libraries by provid-
ing tools like code completion assistants, type hierarchy overviews or text search with
more or less sophisticated semantic support. Especially code completion that proposes
methods applicable on a concrete object is extremely helpful because it is easy to invoke
and object-oriented libraries often provide useful functions as class members. But code
completion is of limited suitability when working with code that is written in a more
functional style or when the functionality one is looking for is provided by a utility class.

Another approach to tackle this problem are search engines like Hoogle for Haskell [Mit]
that allow to search for functions based on their type signature. This assumes, that de-
velopers usually know what types they have and of what type the result should be but
don’t know how to get there. The great number of questions of the form “How to create X
from Y” on popular Q&A websites seems to support this assumption (see Appendix C).
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CHAPTER 1. INTRODUCTION

1.2. Vision

The long-term vision behind this project is to create a type based search engine that
is seamlessly integrated into a developers workflow and becomes such an indispensable
tool like code completion assistants are today. The search should be easily invocable
from an IDE and provide accurate results almost instantaneous.

One possible invocation method is to allow users to directly start the search from
the editor window as illustrated in Figure 1.1. This sketch extends Eclipse’s quick fix
menu that provides several useful refactorings and code rewrite actions depending on
the current context and is well-known by developers. For example, Scala IDE [Sca]
provides a “create method” quick fix whenever the parser sees a method invocation
whose identifier cannot be resolved to an existing symbol.

Figure 1.1.: The missing symbol join leads to a type error (marked red). The search
engine extracts a query from the erroneous expression and proposes the
search results in the quick fix menu.

Whenever the user writes an expression of the form [identifier] or [identifier]
([arguments]*) whereas identifier cannot be resolved to a symbol in scope, the
search plug-in extracts a query from the erroneous expression. When the user opens
the quick fix menu, the query is applied on the index and the best matching results are
presented to the user along the other quick fixes (Figure 1.1). Furthermore, the quick
fix menu contains an additional entry that allows to refine the search query and to fetch
further results.

When the user chooses one of the proposed search results, the plug-in tries to replace
the erroneous expression with the selected one as illustrated in Figure 1.2. If a result
expects more parameters than supplied by the original expression, like, for instance,
names.mkString(", ", ???: String, ???: String) in the paper prototype, the ex-
tra arguments are filled up with a placeholder expression ???. These placeholder can
then be replaced manually or used as a starting point for further queries.

2



1.3. GOAL

Figure 1.2.: After the user selected one of the search results, the plug-in replaces the
erroneous expression with the proposed one.

1.3. Goal

The goal of this thesis is to develop a search engine that assists programmers finding
available functionality in big software projects. The initial project objectives have been
defined as following:

• Finding an approach to search programming APIs that meets the following re-
quirements:

– Identifiers, documentation comments and type signatures should be incorpo-
rated to fulfill a users information need.

– The search should incorporate the semantics of type systems of modern object-
oriented programming languages. This includes:

∗ Subtype Polymorphism

∗ Parametric Polymorphism

∗ Implicit Type Conversions

– Searching a corpus of 100’000 declarations should yield results in less than a
second.

• Implementation of a proof-of-concept prototype of the aforementioned search en-
gine for the Scala programming language.

• Integration of the prototype into the Scala IDE programming environment such
that projects and library dependencies can be indexed.

• Providing an interface that accepts textual search queries.

• Integration of the search functionality into Scala IDE’s quick fix menu.

Unfortunately, these objectives underestimated the complexity of the task. Develop-
ing a suitable search engine required more e↵ort as expected because there was little
preliminary work on this topic that fitted our requirements (see next section). This is
why we decided during the first third of the project to drop the integration into Scala

3



CHAPTER 1. INTRODUCTION

IDE from the project schedule and to spend more time on improving the search engine.
Instead, we have defined the following additional objectives:

• Integration of the prototype into a standalone web service.

• Providing a plug-in for the Scala Build Tool (SBT) that controls the web service
and starts indexing jobs based on SBT build definition.

• Providing a web based user interface for invoking textual search queries.

Besides the reduced complexity compared to an integration into an IDE, a web based
UI o↵ers additional advantages: At one hand, it simplifies collecting queries entered by
users. This usage data can then be used to improve the search engine based on empirical
data. And, at the other hand, it is easier to promote a product that can be instantly
tested by users without installing a plug-in.

1.4. Current Work and Motivating Examples

A developer looking for a certain functionality in a programming library has many tools
available that will assist him. Broadly speaking, we can group these tools into the
following categories:

General purpose search engines
Web search engines, like Google, are frequently used to solve programming prob-
lems. They are simple to use and personal experience shows that a good formula-
tion of the problem as a search query often directs to one or more helpful websites.
Especially for popular libraries, the web o↵ers a vast repository of discussions on
how to solve specific problems.

Besides web-based searches, querying local code repositories and documentation
with text-based search tools may also be helpful. For example, the command line
tool grep allows to search directory structures for files containing text matching a
given regular expression. This can also be leveraged to match method signatures
in source code.

Specialized search engines for retrieving definitions
The tool that comes closest to what we plan to develop is Hoogle for the Haskell
programming language [Mit]. Hoogle accepts textual keywords and a type and
yields identifiers of functions that match this query. Hoogle also matches definitions
with a more generic type than the query. Another tool in this category is the “Java
Search” functionality of Eclipse JDT [Ecl]. The “Java Search” tab supports queries
for definitions with a certain pattern that may also contain types. Though, a
definition has to precisely match the pattern in order to be retrieved. One attempt
to provide a tool similar to Hoogle for Scala is Scalex [Dup]. Unfortunately, this
project has been discontinued in 2013 and is not available for a recent version of
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1.4. CURRENT WORK AND MOTIVATING EXAMPLES

the Scala language. Furthermore, an early attempt to implement such a search
engine for a dialect of the ML programming language by leveraging isomorphisms
on types is given in [Rit90].

Specialized search engines for retrieving code snippets
Another approach is to help user find existing code snippets from various online
resources. For example, Sni↵ for Java [CJS09] collects code snippets from open
source libraries and intersects similar snippets and annotates them with documen-
tation of the library definition. These snippets can then be retrieved by using a
textual query. Similar tools are [WCGH15], which uses the Bing search engine to
find snippets and re-ranks them, and Prospector [MXBK05], which mines reposi-
tory for “jungloids” (typed code snippets) and synthesizes them to new expressions
based on a typed user query.

Program synthesis tools
Besides proposing existing code snippets, some tools focus on synthesizing new
statements based on user queries. Hence, based on definitions in a library a new
sequence of expressions is synthesized that uses the input values from the query,
executes the desired e↵ect and returns a value of the expected type. Some recent
work on this topic is Scala InSynth [GKKP13] and CodeHint [GRB+14].

Code completion assistant
A common feature of IDEs are code completion assistants that propose available
operations on a value. IDEs for object-oriented programming languages usually
propose class members of the object in question. Some code completion assistants
can also filter the operations based on textual keywords or expected return types.
Thus, invoking code completion usually means to query for an API definition with
one input type and, optionally, an expected output type. Often, the specialized
search engines mentioned above are also integrated into the code completion assis-
tant, as this feature is well known by IDE users and easy to invoke.

This is a rather incomplete list of available tools and research papers but should give
a raw overview on the general approaches how the problem can be addressed.

A concrete problem in Scala can be stated as “How to transform a list of integer values
to a string containing the textual representation of all elements separated by a comma
and a space?”. Thus, a user is looking for a function of type (List[Int], String)

=> String. This functionality is provided in the Scala Standard Library as a member
method mkString of List. A developer not yet familiar with the Scala environment, who
does not know about this particular definition, may nevertheless suspect that something
similar should already exist.

Another motivating example is a developer newly introduced to the code base of a
customer relationship management (CRM) system. He performs a task on the UI code
and wants to render an instance of an Address into an HTML document. While getting
familiar with the CRM system, he observed that there is a common representation
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of such objects. Thus, he suspects that there should be a function from Address to
HtmlElement.

In the first case, the developer’s question can be answered by querying a web search
engine. The problem is common amongst developers new to Scala and answered many
times on various websites. In the second case, this is not an option and the developer
has to fall back to a local solution. Despite general purpose search engines are often
e↵ective, they are far from optimal. Googling a problem requires to manually browse
several proposed web sites and to check if the solution given is applicable to the concrete
system (e.g. does it involve the same version of the library). Using grep or similar tools
to locally search the code requires developers to be familiar with such tools and to be
able to e↵ortlessly formulate appropriate regular expressions.

Also, using a specialized search engine or a program synthesis tool to retrieve code
snippets that solve the programming tasks is not necessarily well-suited. Despite such
tools are probably capable of retrieving a correct snippet, their main purpose is not to
retrieve single definitions. Furthermore, it is debatable whether such tools foster good
coding practice. First, while code snippets are useful for learning about the available
APIs and common usage patterns, there is a certain risk that developers blindly use
the proposed snippets without fully understanding all aspects of the inserted code. And
second, having code snippets readily available may encourage a copy & paste coding
style. Instead of creating reusable abstractions for reoccurring problems, developers
start to repeatedly use the same snippets in di↵erent locations. This concern is somehow
supported by the findings reported in [WCGH15]. The evaluation of the usage data of
Bing Code Search showed that “some other users issue the same query on di↵erent days,
showing they are using the tool as a faster, task-level auto-completion”.

An often e↵ective way to answer our example queries are code completion assistants.
Concerning the first example query, a user may quickly find the mkString method by
invoking the assistant on an instance of List. Especially, if the proposed members can
be filtered by keywords and matching return types. In the case of the second example
query, traditional code completion is most likely of little help as the function wont be
defined as a member of Address.

As Hoogle like search engines are designed to answer these kinds of questions, they are
naturally well-suited for the task. However, there are varying levels of how generously
definitions are matched by the currently available systems. An ideal system should also
retrieve definitions with types similar to the query. Concerning the second example, if
there is no definition with a type Address => HtmlElement, the user may be interested
in definitions that return a subtype of HtmlElement. For object-oriented languages, we
found no current work that used a satisfactorily notion of similarity such that subtyping
relations are fully considered. While solutions like InSynth and CodeHint are capable of
retrieving definitions similar to the query, they try to address a more ambitious problem
which has consequences on the size of the search scope that can be covered.
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1.5. About this Document

This report describes the design, implementation and evaluation of a specialized search
engine for retrieving definitions from APIs. We start in chapter 2 with formulating the
API retrieval problem and outline the requirements and fundamental design decisions. In
the second part of chapter 2 we additionally discuss how the type system of the targeted
programming language influence the semantics of API retrieval. The core of this thesis
in chapter 3 describes our API retrieval model by first introducing the mathematical
foundation and then describing and motivating our modifications to the vector space
model. The following chapter 4 shows how we implemented our model for targeting the
Scala language. In chapter 5, we describe how this implementation has been evaluated
to support the assumptions made during the design phase. And finally, we give in the
concluding chapter 6 an outlook on further work and how our approach can be adapted
for targeting additional programming languages.
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This chapter draws an outline of the API retrieval problem that is addressed during
this thesis and describes how API retrieval is related to information and data retrieval.
Furthermore, we show how the type system of a targeted programming environment
influences the requirements to an API retrieval system.

2.1. API Retrieval

We define API retrieval as the process of retrieving declarations from a programming
API based on a user’s information need. Opposed to a program synthesis or code snippet
retrieval system, an API retrieval system does not aim to inform a user about how a
programming task can be solved, but rather gives pointers to existing functionality that
may help to implement said task.
The information needs that should be answered by an API retrieval system are de-

rived from problems a user faces during the implementation of a programming task (see
Appendix C). A typical information need may have one of the following forms:

• Is there a value with characteristic X?

• How can I construct an X given a Y?

• What operations are defined on X?

• Is there a function accepting an X and performing the e↵ect Y?

The API retrieval system satisfies these information needs by providing fully-qualified
identifiers of definitions that may be useful to solve the user’s problem.

2.1.1. API Entities

We use the term “API Entity” to describe any definition in the global value namespace
of a program. This includes the source code of the program itself and the libraries the
program depends on. An API entity has a name and a type. Some examples of API
entities are functions, values, constructors and class members (except type members).
Optionally, there is an attached textual description of the characteristics of the entity,
e.g., its documentation comment.
An API entity represents a document in the API retrieval system. Thus, API entities

are the indexed items that are retrieved during the search process.
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Classes, interfaces and other type definitions are not considered as API entities and
cannot be retrieved directly. The motivation behind this decision is, that a type by
itself cannot be used to solve a programming problem. Rather, programmers compose
expressions of a certain type. Nevertheless, types can still be discovered through the
operations that are defined on them.

2.1.2. Types

Depending on context and background of the speaker, there are several interpretations
of the term “Type” in computer science. In this thesis we mainly use the notion that a
type describes a set of operations that can be applied on values inhabited by a type.

The main motivation behind types in programming is to prove the absence of pro-
gramming errors of a certain category. The exact kind of errors that can be eliminated
depends on the sophistication of the type system used to check the program.

When it comes to API retrieval, we can leverage the documentary characteristic of
types to increase the precision of the search engine. In general, a type limits the possible
implementations of an entity and therefore the functionality provided. For example, an
untyped definition of an entity with the name max does not provide much information.
It may represent some upper bound of a numeric range, a function returning the larger
of two numbers or a person called Max. If we know that max is of type Int, there are
certainly fewer possibilities of what this entity represents. Naturally, this information
can also be provided by a documentation comment like “the largest value representable
as an Int” which describes the max value even more precisely.

While types may often be less precise than a well-written documentation they have
other advantages: Types are less ambiguous and often required by the compiler. Thus,
an Int represents a well-defined range of integer values with a certain set of available
operations. Furthermore, many languages either automatically infer the type of an entity
or require programmers to explicitly specify its type. Types are therefore always present,
independent of whether the programmer cares about good documentation or not.

In languages that encourage a strong use of types by providing a powerful type system,
the documentary characteristic of types is even more distinct. For example, a function
returning the Option type in Scala clearly states that the computation may return a
value or fail without any error message.

Altogether, we assume that users can express many information needs more precisely
with types:

• Is there a value of type X?

• How can I construct a value of type X given a value of type Y?

• What operations are defined on values of type X?

Or through a combination of types and natural language:

• Is there a function accepting a value of type X and performing the e↵ect Y?
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These information needs are less ambiguous and should therefore be more likely to be
answered satisfactorily.

2.1.3. Queries

A query language should allow users to express their information need such that it can be
processed by the retrieval system. In API retrieval, a user should be able to describe API
entities that provide a certain functionality. As we have discussed earlier, an important
property of an API entity is its type. Furthermore, some aspects may only be described
in natural language. These aspects should be expressible by textual keywords.
Altogether, we use the following high level syntax when discussing queries in this

report:

query:

type

keyword* ’:’ type

Hence, a query is either a type or a list of keywords followed by a colon and a type.
The exact query syntax in our prototype implementation is more elaborated but follows
this basic pattern. In general, we use a syntax similar to Scala’s to describe types.
Following phrases are frequently used during this report:

Function Types
The type of a function with a parameter type A and a return type B is written as A
=> B. We do not explicitly distinguish between method types and function types.
Hence, Int => String can refer to a value with a function of this type, a method
accepting an Int and returning a String or a member of Int returning a String.

Tuple Types
A tuple is a finite, heterogeneous list of fixed length. A tuple’s type is denoted
by parentheses and the types of its components are separated by commas. Hence,
(Int, String) is the type of a tuple containing an Int and a String. Tuples are
also used to describe function types accepting more than one parameter, e.g. (A,
B) => C.

Type Arguments
A type T with a type argument A is written as T[A] and reads as “a T of A”. Some
examples are List[Int] or Map[Int, String].

Type Variables
We use the convention that type names consisting of a single uppercase letter do
not refer to a concrete type but rather to a generic type variable. Hence, the
query A => List[A] reads as “a function taking values of an arbitrary type A and
returning a List of the same type A”.
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We assume that this syntax is su�cient to express most information needs. Tex-
tual keywords can be used to describe the expected side e↵ects and characteristics of
transformations not expressible by types and the type part describes the involved data.

2.2. Data and Information Retrieval

According to the terminology defined in [Van79], data retrieval is the activity of finding
records in a set of well-structured and unambiguous data. Using a SQL query for re-
trieving records from a relational database management system (RDBMS) is a typical
data retrieval task. Data retrieval systems give exact answers to the user’s information
need. For example, the query “what car models have been manufactured in 2015?” can
be translated to a formalized query and be answered precisely by a RDBMS.

Information retrieval systems on the other hand, do not directly answer the users in-
formation need but rather inform them of the existence of documents that are relevant to
the query. Hence, an information retrieval system does only give pointers to documents
that may be useful to answer a given question.

Table 2.1.: Comparison of Data, API and Text Retrieval

Data Retrieval API Retrieval Information Retrieval

Information Structure Structured data Structured data Free text
Information Semantics Well-defined Well-defined Ambiguous
Query Language Artificial Artificial Natural
Query Specification Complete Incomplete Incomplete
Expected Results Matched Records Relevant Records Relevant Records
Robustness Sensitive Insensitive Insensitive

Table 2.1 gives an overview of the di↵erences between data and information retrieval
systems and shows how API retrieval is related to both of them. The individual items
of this comparison are further discussed in the following three subsections.

2.2.1. Information Structure and Semantics

Like data retrieval, API retrieval works on structured data with mostly well-defined
semantics. Hence, we can use a data model to describe semantics and relations of each
datum. This is in contrary to information retrieval where documents are at most semi-
structured and the semantics of a word is often ambiguous.

Listing 2.1 shows a typical record from the Scala standard library’s source code [ET].
It demonstrates the hierarchical structure of documents in Scala APIs as MaxValue is
part of the object Int which again is a part of the package scala. Those has a relations
are described in the Scala language reference [Ode14] and could be used to describe an
according data model. Additionally, the modifiers final and val and the return type
Int are further properties with well-defined semantics, whereas Int is a reference to the
according type definition.
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package scala

// ...

object Int {
// ...

/** The largest value representable as a Int. */
final val MaxValue: Int = java.lang.Integer.MAX_VALUE

}

Listing 2.1: Excerpts from a source file of the Scala standard library

Beside these well-defined properties, the documentation comment between the tokens
/** and */ and the name MaxValue of the value are less formalized. While the syntax of
names is defined in the specification and naming often follows conventions or guidelines,
the documentation comment is a description of the entity in natural language. Unfortu-
nately, name and doc comments are often highly relevant to answer a users information
need. E.g., a user looking for an entity of type Int is most likely interested in a specific
value representing a physical constant whose concept is not formalized by the program-
ming language but described by an identifier. In this case, the API retrieval system has
to consider this information to retrieve the most relevant results.

2.2.2. Query Language and Specification

Data retrieval systems typically use an artificial query language with a restricted syntax
like SQL and users give a complete specification of the data they are interested in. The
user knows about the structure of the data and is therefore able to use specific filters
and transformations to describe his information need.

Usually, a less formalized language is used to query information retrieval systems. The
query language accepts a sequence of arbitrary words and there are only a few syntactic
constructs for annotating keywords. E.g. some query languages allow users to precede
keywords with a minus sign to denote that this term must not occur in the retrieved
documents. Also, an information retrieval query is not an exact specification of the
documents a user is looking for but rather a vague description of the documents with
terms that seem relevant to the user.

In API retrieval, we can use an artificial language to describe an information need but
we cannot assume that a user has su�cient knowledge to completely specify the type
signatures he is looking for.

2.2.3. Search Results

The nature of the query language has major consequences on how search results can be
retrieved. If there is a exact and complete specification of the documents it is su�cient
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to report those documents that match the query. Also, the order of the results can be
arbitrary unless the user explicitly specifies a sorting key.

In case of an incomplete query specification, users expect that only relevant documents
are retrieved or, at least, that documents are sorted by their relevance to the information
need. Hence, an information or API retrieval system must come with some notion of
relevance that conforms with the users perception of relevance.

2.2.4. API Retrieval as an Information Retrieval Problem

As we have shown in the previous sections, API retrieval shares properties with both
retrieval problems. Like in data retrieval, it operates on structured data with well-defined
semantics and allows the use of an artificial query language. But, like in information
retrieval, query specifications may be incomplete and a relevance based result set is often
preferred.

This leads to the fundamental question whether we want to use a deterministic (Data
Retrieval) or a probabilistic (Information Retrieval) approach to retrieve terms from API
definitions. Please note, that choosing a deterministic approach does not necessarily
exclude relevance based ordering of the result set. Also, with a probabilistic approach
it is always possible to filter out entries that do not match the query. This is more a
question about what technique is used to retrieve an initial set of results that may be
passed to further processing steps.

The following points describe why we decided to try an approach based on information
retrieval during this thesis:

Explorative Nature of the Problem
The tool we want to develop should help users to explore APIs. And exploring also
means to face the unexpected and to discover that this is what you actually were
looking for. Information retrieval systems are typically built to support queries of
explorative nature [Bro02] and therefore seem to be naturally better suited for this
use case.

Names and Documentation
Developers invest a significant part of their time to come up with descriptive term
names and meaningful documentation comments. Both give an additional insight
into the functionality of a method or the meaning of a value that is not covered by
the type signature alone. We assume that the information content of doc comments
and term names is in a similar order of magnitude as the information contributed
by type signatures and therefore should be treated as a first class citizen for match-
ing and scoring documents. Querying unstructured text documents is the main
application area of information retrieval systems.

Scalability
The Scala Standard Library alone defines about 80’000 terms and 2’000 types and
most non-trivial projects are likely to exceed these numbers sooner or later. This
indicates that a responsive search engine that covers the scope of a complete project
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including all library dependencies must be able to filter hundred thousands of doc-
uments within milliseconds. Furthermore, type hierarchies combined with para-
metric types lead to a super-linear increase of type signatures potentially matching
a query with increasing number of type definitions (see subsection 2.3.4). This is
why many similar tools that use a deterministic approach have to limit either the
search scope or the expressiveness of queries. E.g. Prospector [MXBK05] allows
only one input and one output type per query. Altogether, these two observations
indicate that implementing a scalable search engine that uses exact matching is
likely to be much harder than following a probabilistic approach.

As we want to address API retrieval like an information retrieval problem, it is possible
to use a slightly adapted formulation of the IR problem [Van79] to describe API retrieval:
Given a collection of API entities C = d

1

, ..., d
n

, a user query q and a set of entities
relevant to the query R(q) ⊂ C, compute a ranked list of entities such that the entities
in R(q) have a ranking in 1, ..., �R(q)�. Hence, we are looking for a way to compute the
best ranking for the entities in C such that the user sees the most relevant results first.
Displaying non-relevant results is not desired but also does not a↵ect the e↵ectiveness
of the system as long as these entities are listed below the relevant results.
This notion of API retrieval is also important for the evaluation of our retrieval system

in chapter 5. Furthermore, this interpretation assumes that users browse the result set
sequentially from highest rank to lowest. If a user sees no results that are relevant to his
query, he can assume that there are no according entities in the document collection.

2.3. Type Systems and API Retrieval

Many programming languages have a more or less sophisticated type system that checks
if the types in a program are consistent. Hence, a type system consists of a set of rules
that associates expressions and definitions in a program with a type. If none of these
rules can be applied without a contradiction or if a assigned type conflicts with the type
annotated by the programmer, a type error is raised.
This section introduces some important concepts of type systems used in popular

object-oriented programming languages and discusses their impact on API retrieval.

2.3.1. Polymorphism

Polymorphism is the general term for techniques to provide a functionality for a range
of types with one uniform interface. There is probably no modern mainstream program-
ming language that does not support at least one kind of polymorphism.
Usually, polymorphism is subdivided into three major kinds:

Ad Hoc Polymorphism
Several functions with the same name are defined with di↵erent parameter and
return types. This is often referred to as function or operator overloading.
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Parametric Polymorphism
A function or data type is defined such that the implementation does not depend
on the type of some of the values it is applied on. Parametric polymorphism is
often implemented with type parameters (or sometimes called “generics”).

Subtype Polymorphism
A type A is defined as a subtype of another type B if every operation that can be
invoked with a value of A can also be invoked with a value of B.

Note, that this is just a theoretical classification. Programming languages sometimes
use a single concept to achieve di↵erent forms of polymorphism or provide variations of
these forms.

Concerning API retrieval, parametric and subtype polymorphism are the biggest
sources of complexity compared to other features of type systems. Both forms implicate
that the number of entities potentially matching a type query grows substantially. E.g.,
if a language does not support polymorphism, the query “a function accepting a value of
type A” can be answered by using a simple regular expression that matches all function
declarations that use A in the parameter list. This is no longer su�cient if polymorphism
is involved. In this case, functions accepting a supertype of A and type parameterized
functions have to be included in the search scope.

2.3.2. Subtyping

Subtype polymorphism is an inherent property of most (if not all) object oriented pro-
gramming languages. The ability to include subtype relations in type queries is therefore
crucial for an API retrieval system that should work on mainstream programming lan-
guages.

A type S is a subtype of a type T (S <∶ T ) if a value of S can be used whenever a
value of T is expected. This relation is usually defined reflexive, such that S <∶ S, and
transitive, such that if S <∶ T and T <∶ U then S <∶ U .

Subtype polymorphism can be further classified into two groups:

Nominal Subtyping
Types are explicitly defined to be a subtype of another type. One typical example
of nominal subtyping is Java’s interface inheritance. An an interface A is not a
subtype of B unless the definition of A states that A implements B.

Structural Subtyping
Subtype relations are implicitly derived from a type’s structure. Given two record
types A and B, A <∶ B holds if the set of elements of A is a superset of elements of
B. E.g. {a ∶ Int, b ∶ Long} <∶ {a ∶ Int}.

A language that exclusively uses structural subtyping is Go. More precisely, Go allows
the definition of interfaces that are implicitly implemented by a record if its structure
matches the interface.
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In Scala, both structural and nominal subtyping is supported. Unlike Go, structural
subtyping in Scala does not require a named type. Instead of that, it is possible to
describe the expected types by using a structural type. A structural type is a class
body that only contains abstract member definitions. Listing 2.2 gives an example of a
method that uses a structural type to describe the expected type. The greet method
can be invoked with any object that has a member name of type String.

def greet(named: {def name: String}) = {
println("Hi " + named.name + "!")

}

Listing 2.2: Structural Subtyping Example in Scala

When it comes to API retrieval, structural subtyping requires more statical analysis
to mine all subtype relations in a program. While a compiler does only have to type
check the structural subtype relations that are e↵ectively used, mining for all subtype
relations in a program requires to check all structural types (or Go like interfaces) against
all other type definitions.
Because of this additional complexity and the observation that structural subtyping

is almost never used in popular Scala libraries, we decided to not support structural
subtyping in our API retrieval system for now.

2.3.3. Top and Bottom Types

One further distinction of type systems using subtype polymorphsim is whether the type
system is unified or not. A unified type system has a type � for which S <∶ � holds for
every S. Thus, every type is a subtype of a common root type �. In type theory, this
root type is referred to as the “Top” type.
Both Scala and C# are examples of languages with a unified type system. In Scala

the top type is called Any and in C# Object. While Java also uses Object as a root
type for every type defined by a class, its type system is not strictly unified as there are
also primitive types that do not extend Object.
Usually, top types are used to provide some basic language features. E.g. Scala’s

Any defines the toString method that ensures that there is a textual representation for
every object which may be useful to programmers during debugging.
On the other end of the type hierarchy, a language may also use a bottom type � for

which � <∶ S holds for every S. In Scala, the bottom type is called Nothing.
One use of the bottom type is to use it as the type of expressions that never return

a value. E.g., the throw expression in Scala is of type Nothing which allows method
definitions like

def ???: Nothing = throw new NotImplementError

Using ??? as a stub for a method implementation as in

def theAnswer: Int = ???
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will successfully type check because Nothing <: Int but terminates with an exception
at runtime.

Having a unified type system with a top and bottom type has some consequences
when it comes to API retrieval. First, it allows the definition of functions that have a
type with minimal information content. A method with the signature

def identity(a: Any): Any

may be a valid declaration in Scala but its type Any => Any does not carry much informa-
tion. As a consequence, applying API retrieval on libraries with many such declarations
will never achieve high precision without including names and documentation comments
into the query.

Another consequence is, that a unified type system allows extremely unspecific queries
like Nothing => Any that can potentially match a huge number of entities.

2.3.4. Parametric Types

Beside subtype polymorphism, parametric polymorphism is another approach to write
generic code that can be applied to a certain range of types. Like subtyping, some form
of parametric polymorphism can be found in many popular languages like Java, C# and
C++.

In Scala, parametric polymorphism is implemented through type parameters that can
be added to method, class, trait and type alias definitions. For example, the definition

class Box[T](element: T)

defines a generic class with one type parameter T. A Box can be instantiated with any
type argument for T. E.g. new Box[Int](1) creates a Box with the type argument Int
which is written as Box[Int]. Because type arguments can usually be inferred from the
according value arguments, it is also possible to write new Box(1) which results in a
value of the same type.

A more useful example is the generic method declaration

def reverse[T](ts: List[T]): List[T]

which accepts a List containing elements of an arbitrary type and returns a List con-
taining elements of the same type.

Many languages also o↵er the ability to specify upper and lower bounds to restrict the
type argument of a parametrized type. Scala uses the syntax T <: U to specify that T
has an upper bound of U or that T must be subtype of U. Accordingly, T >: L is used to
specify that T has a lower bound of L. An example of a generic method using an upper
type bound is

def sort[T <: Ordered](ts: List[T]): List[T]
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This method can only be invoked on a List whose elements extends the Ordered trait.
This trait specifies the ordering relation required to sort a list.
An API retrieval system that supports parametric types has to allow users to use

both generic and concrete type queries and retrieve suitable results in both cases. For
instance, a user searching for a function similar to reverse may be aware that there is
probably a generic implementation and therefore uses a type query List[T] => List[T]

parametrized by T. On the other hand, a user searching for how to sort a List[Date]

may use a concrete type query List[Date] => List[Date] because he does not have a
generic solution in mind.

2.3.5. Variance

The ability to use both subtyping and parametrized types leads to the question whether
a Box[Apple] can be used where a Box[Fruit] is expected if Apple <: Fruit. Or,
in other words, whether Box[Apple] <: Box[Fruit] or Box[Fruit] <: Box[Apple].
The answer to this question is, that it depends on how one intends to interact with the
content of the Box.
For example, given a method

def unpack(b: Box[Fruit]) = {

val f: Fruit = b.get

// ...

}

that only reads the content of the Box, it is safe to call unpack with a Box[Apple].
Hence, we can state in this case that Box[Apple] <: Box[Fruit]. This can also be
transfered to the real world analogy: If one ordered a box full of fruits and gets a box
full of apples, one may be disappointed by the lack of variety but there is technically
no reason to refuse the delivery. Using exclusively operations on a Box[Fruit] that
either retrieves a Fruit or does not involve the type argument at all (e.g., an isEmpty

operation) is called covariant access to a Box of Fruit.
But the matter is di↵erent if we need contravariant access to a Box of Fruit: Given

a method

def pack(b: Box[Fruit]) = {

b.set(new Fruit())

}

calling pack with a Box[Apple] should rise a type error because the box will no longer
contain an Apple after pack returned. Though, it is type safe to call pack with Box[Any].
In this case, we can state that Box[Any] <: Box[Fruit]. Once again, the fruit analogy
holds surprisingly well: If one prepares a fruit delivery and gets a box with apple-shaped
cut-outs, one would not be able to insert an arbitrary fruit.
A third case is a method that both reads a Fruit from the Box and writes a Fruit back

into it. This operation can only be invoked with a Box[Fruit]. Passing a Box[Apple]
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would not type check because the method may put a Fruit into it and passing a
Box[Any] would result in an error because the method expects that a Fruit is in the box.
Thus, neither Box[Apple] <: Box[Fruit] nor Box[Fruit] <: Box[Apple] holds. In
this case, we speak of invariant access to a Box of Fruit.

Finally, bivariant access is used when the receiving method calls only operations
on the Box that do not involve the type argument. For example, a function that re-
paints a Box[Fruit] by setting Box’s color attribute to "blue" is invokable with a
Box[Apple] as well with a Box[Any] which implies that Box[Apple] <: Box[Fruit]

and Box[Fruit] <: Box[Apple].
Despite it is possible to write a compiler that automatically derives which type of

access is used in a certain expression [AHS11], most languages o↵er particular variance
annotations to let programmers choose if a type constructor is used invariantly, covari-
antly or contravariantly. Altogether, there are two main approaches to support variance
annotations:

Definition-site Variance Annotations
Languages using definition-site variance move the responsibility for deciding whether
a parametrized data type can be accessed co- or contravariantly to the author of
the data type. In Scala, this is denoted by a + for covariant and a - for con-
travariant before the definition of the type parameter (no annotation defaults to
invariant). E.g. the following definition defines a Box with a type parameter T that
can only be accessed covariantly:

class Box[+T](content: T) {

def get: T = content

}

The +T annotation has a consequence that Box must not have a method using T

contravariantly. Hence, a set(t: T) member would violate the variance annota-
tion.

Use-site Variance Annotations
The other approach is to let users of a data type decide with what variance it is
accessed. Hence, all parametrized data types are per default invariant over their
type parameters but it is possible to use a type with a di↵erent variance. The
most popular language using use-site variance is Java. But, mainly for Java inter-
operability, Scala also support use-site variance in form of existentially quantified
types. When defining a method with a parameter of type Box[Fruit] used co-
variantly one can denote this by using Box[ <: Fruit] as the parameter type.
<: Fruit is an existentially quantified type with an upper bound of Fruit. The

correct signature for unpack is therefore

def unpack(b: Box[ <: Fruit])

Accordingly, we can define pack with an existentially quantified type with a lower
bound of Fruit:
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Any

Int String

C[Any]

C[Int] C[String]

C[Any]

C[Int] C[String]

C[+T ]

C[−T ]

Figure 2.1.: Co- and contravariant type constructors

def pack(b: Box[ >: Fruit])

Existentially quantified types also allows to use a type bivariantly by specifying no
bounds:

def repaint(b: Box[ ])

The equivalent types in Java would be Box[? extends Fruit], Box[? super

Fruit] and Box[?].

Comparing these two approaches, use-site variance is more flexible than definition-
site variance. Though, definition-site variance has been adopted by more programming
languages as it is generally assumed to be simpler to use and easier to comprehend for
programmers [Tat13].
Definition-site variance is also strongly related to covariant and contravariant functors

in category theory [Pet12]. Functors are the theoretical foundation of type constructors
and allow to reason about the variance of composed type constructors.
Figure 2.1 shows how co- and contravariant type constructors map subtype relations

to the constructed types. The covariant constructor C[+T] associates to every subtype
relation A <: B a subtype relation C[A] <: C[B] with the identical direction. A con-
travariant constructor C[-T] on the other hand, reverses the direction of a relation A <:
B such that the associated subtype relation becomes C[B] <: C[A].
This is also the reason why Scala uses + and − to encode variance as it allows to

multiply variance annotations in nested applications of type constructors. Hence, given
the type constructors List[+T], Promise[-T] and Array[T] (invariant), it is possible
to determine the variance of T in List[Promise[List[T]]] by multiplying +1∗−1∗+1
which results in a variance of −1 (contravariant). Invariance is the destructive element
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0. Thus, both List[Array[T]] (+1 ∗ 0) and Array[Future[T]] (0 ∗ −1) are invariant
over T.

Concerning API retrieval, variance is important for two reasons. First, the retrieval
model should be able to incorporate variance annotations and match results accordingly.
Hence, if List[T] is defined covariant over T and as a subtype of Iterable[T], a query
List[Apple] => Unit should retrieve an entity of type Iterable[Fruit] => Unit.

And second, definition-site variance annotations add valuable information about the
relation between a parametric type and its type parameters. Variances tells if a type
is consumed, produced or both which we assume to be of high relevance to users. E.g.
a user searching for a function returning a Fruit may also be interested in functions
returning a covariant container containing Fruit, e.g., a List[Fruit], because there
is an operation defined on this container that produces a Fruit. Though, a function
returning a contravariant container of Fruit, e.g., a Promise[Fruit], will much less
likely be of interest to the user. By definition, this type cannot produce a Fruit or it
could not have been defined contravariantly over its type parameter.

2.3.6. Summary

As we have seen, a programming language’s type system has some influence on the
requirements to an API retrieval system. For this thesis, we decided to address the
problem for the Scala language first and therefore designed our retrieval system with a
particular type system in mind. Altogether, our search engine should incorporate the
rules of a type system with the following properties:

• Static Type Checking

• Nominal Subtyping

• Bounded Parametric Polymorphism

• Definition-Site Variance Annotations

The ability to statically check types at compile time is required to extract type infor-
mation from source code. This does not strictly require that the targeted language uses
a static type system by itself. Technically, an external tool that infers and checks types
in source files would also su�ce. The limitation to only support nominal subtyping is
also not a strict requirement but simplifies the extraction of subtype relations.

A more drastic restriction is that we do currently only aim for supporting definition-
site variance annotations. This limits the support for the Java language and existential
types in Scala. This does not imply that Java will not be supported at all, but the
precision of some queries whose most relevant results use existentially quantified types
may be impacted.

Altogether, these framing conditions led to the design of an API retrieval model dis-
cussed in the next chapter.
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3. An API Retrieval Model

Due to the reasons discussed in chapter 2, our goal is to integrate API retrieval into
an existing information retrieval system. More precisely, we want to integrate our API
retrieval model into the well-established Lucene search engine. Thus, we will first intro-
duce the Vector Space Model (VSM) which is the mathematical model used by Lucene.
The next section discusses our retrieval model derived from VSM. And finally, we elab-
orate how certain Scala specific language features are integrated into the basic retrieval
model.

3.1. Vector Space Model

The Vector Space Model [SWY75] is a framework that can be used to discuss and
compare information retrieval systems that share the basic principle of representing
documents and queries as vectors in a document space. In this section, we use the
notion of VSM as a framework as presented in [Zha15].
Each document in a collection D = d

1

, ..., d
m

is represented as a n-dimensional vector
d
j

= (w
1,j

, ...,w
n,j

) where w
i,j

stands for the weight of term i in document j. The weight
of a term should indicate how well the term characterizes a document. Typically, a
weight greater than zero indicates that a term is present in the document.
Identically to document vectors, a query can be encoded as a vector q = (w

1,q

, ...,w
n,q

)
where w

i,q

is again the weight of term i in the query. Here, the weight can be interpreted
as how relevant a term is to the query. The weight function for documents and queries
has not necessarily to be identical.
The last part that constitutes to a VSM system is a similarity function sim(d

i

, d
j

)
that computes a similarity coe�cient between two vectors. These vectors may represent
two documents or, in case of information retrieval, a document and a query.
Altogether, VSM groups information retrieval systems that share the following basic

assumptions:

• Documents and queries are composed of independent, atomic parts (terms) that
have a certain weight.

• The relevance of a document to a query correlates with the similarity of the two
corresponding vectors.

Both of these assumptions show, that VSM uses a simplified notion of what a document
identifies. For example, semantic dependencies between terms are not considered when
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querying documents. Nevertheless, it is still possible to retain semantic information
given a suitable method for extracting terms.

In order to implement a VSM system, we have to define the following aspects:

• How is a term defined and extracted from documents?

– This determines the dimensionality n of term vectors.

• How are term weights assigned. . .

– . . . to document vectors?

– . . . to query vectors?

• What is the similarity function sim(q, t)?
In the following subsections, we show some possible answers to these questions.

3.1.1. Bag-of-Words Representation

A simple, but common implementation of how terms are mapped to vector dimensions
is the Bag-of-Words representation (BoW).

BoW uses each word in the vocabulary V of a document collection D as a dimension
in the vector space, such that n = �V �.

A naive approach to parse the document collection and build the vocabulary might be
to treat all continuous sequences of alphanumeric characters as a word. But, depending
on the kind of documents processed by the VSM system, applying further filters may be
reasonable:

• Transforming upper-case to lower-case letters.

• Removing words that are very common in the document’s language (Stop Words).

• Reducing inflected and derived words to their word stem (Stemming). E.g., “dogs”
to “dog” and “ate” to “eat”.

• Replacing words with more commonly used synonyms.

Often, these filters are motivated by performance considerations and aim to reduce
the size of the vocabulary. Additionally, stemming ensures that various flections of a
word in a query will match other flections of the same word in a document. Hence, if
a user searches with the term “writing”, he will likely also be interested in documents
containing terms like “write”, “wrote” and “writer”.
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3.1.2. Term Frequency

Assuming that a higher count of a word in a document indicates that the word is more
relevant to the content of the document, term frequency seems intuitively to be a good
measurement for weighting terms. The term frequency tf

i,j

denotes how often the term
i occurs in document j.
In combination with the BoW representation, the documents

A fox jumps over the hedge.

and

A jumping fox is a fox.

can be transformed to the term vectors d
1

and d
2

as given in Table 3.1.

V = { fox jump over hedge }
d
1

= ( 1 1 1 1 )
d
2

= ( 2 1 0 0 )

Table 3.1.: Two documents represented as term vectors

The vocabulary V consists of all word stems occurring in one of the documents without
the stop words “a”, “the” and “be”. Furthermore, each element in a term vector holds
the according type frequency.

3.1.3. Inverse Document Frequency

One shortcoming of using term frequencies for term weights is that every term is weighted
equally independent of its specificity. For example, terms that occur frequently in this
chapter are “vector” and “term”. A quick Google search reveals, that there are ap-
proximately three times more websites matching “term” than “vector”. Hence, “vector”
provides more information when describing the content of this chapter. Or in other
words: “vector” is more specific than “term”. Incorporating this specificity into the
term weight would be useful to ensure that a query like “term vector” favors documents
containing “vector” over documents containing “term”.
One popular measure for the specificity of a term is the inverse document frequency

(IDF):

idf(w) = log �D�
�{d ∈D ∶ w ∈ d}�

Where w is a query or document term and D is the document collection. Hence, IDF
contains the quotient of the total number of documents and the number of documents
containing the term w. The divisor �{d ∈D ∶ w ∈ d}� is often referred to as the document
frequency of w.
Depending on the specific VSM instantiation, IDF is incorporated into the weights of

either the document vectors, the query vectors or both.
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3.1.4. Dot Product Similarity

Probably the simplest similarity function for a VSM is the dot product similarity between
a document d and a query q:

sim(d, q) = d ⋅ q = �
t∈V w

t,d

w
t,q

The motivation behind using the dot product is that the resulting scalar describes the
angle between the two vectors. If d and q are more similar, the angle becomes smaller
and the dot product is increased.

Another similarity function that is mentioned more frequently in VSM literature is
the normalized dot product:

sim(d, q) = d ⋅ q
�d��q� = cos ✓

This is the dot product normalized by the product of the euclidean norms of d and
q. Because this equals to the cosine of the angle ✓ between d and q, the relation to the
similarity between d and q becomes more apparent.

But normalizing over the norm of the document vector comes with the downside that
the document length is eliminated from the result. Hence, a long document with many
occurrences of a query term does score equally as a shorter document with the same
ratio of the query term. This may not be intended if a longer document works out the
topic in more details.

Also, normalizing over the norm of the query vector is only necessary if one wants to
compare scores from di↵erent queries.

3.1.5. Doc Length Normalization

One issue with using no normalization of the document length as proposed in subsec-
tion 3.1.4 is, that longer documents have a higher probability of containing a term by
chance than shorter documents. For example, this report uses the term “fox” in the
example documents in subsection 3.1.2 despite we do not provide any useful information
about foxes. Without any normalization, this document would achieve a better score for
the query “fox” than a short essay about foxes.

Thus, a normalization over the document length is still desirable, but the penalty for
long documents should not increase linearly as in 1��d�. A simple function for document
normalization, which is also used in Lucene’s default similarity function, is

norm(d) = 1�∑
t∈d tf(t, d)

Note, that this function uses the sum of the term frequencies in a document, which
resembles the length of the original document, instead of the norm of the document
vector.
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3.1.6. TF/IDF

One popular instantiation of VSM is TF/IDF (term frequency /inverse document fre-
quency). All TF/IDF instantiations use term and query vectors derived from the BoW
representation. Furthermore, the TF and IDF factors are used in at least one of either
the query or document weights. A possible assignment of the weights would be

w
t,d

= tf(t, d)
for the weight of term t in document d and

w
t,q

= idf(t)2
for the weight of term t in the query vector. An according similarity function is then

sim(d, q) = norm(d)�
t∈V w

t,d

w
t,q

While this specific instantiation shows the basic idea, it resembles more or less the
default implementation used in Lucene without additional features like document and
field boosts. Other than that, there are more elaborated instantiations like Okapi
BM25 [RWJ+94] that share the same foundation as TF/IDF but generally achieve a
higher precision when applied on text documents.

3.2. Fingerprint Evaluation Model

As TF/IDF is a VSM instantiation designed for retrieving text documents, it is not
particularly well-suited for retrieving API entities with type queries.
First, a naive mapping from type signatures to a BoW like representation is probably

too destructive. E.g., one approach would be to create a BoW that simply contains each
typename appearing in a type signature. Thus, the entity

def filter[T](ts: List[T], pred: T => Boolean): List[T]

can be represented as a BoW

List, T, =>, T, Boolean, List, T

But such a representation does not reflect how the types are related to each other.
For instance, during retrieval it is not possible to tell whether the function accepts a
function T => Boolean or List[Boolean] => T. Furthermore, what if a user searches
with a type parameter named A instead of T?
Therefore, we need a better way to decompose type signatures and type queries into

term vectors such that some of the semantic information of the type is still preserved.
Second, the TF/IDF similarity function does favor documents that have a higher term

frequency for a term occurring in the query. Hence, a document a a b c a scores higher
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than a b c against the query a. But this is not the expected behavior when retrieving
types. Instead, a user searching for a type Int => String expects entities that have
exactly one Int parameter. A function Int => Float should therefore score higher
than a function Int => Int => Float and we need a similarity function that reflects
this expectation.

During an empiric process, we developed an API retrieval model called Fingerprint
Evaluation Model that addresses the aforementioned issues. While our model had its
origins in VSM, it clearly diverted from VSM and can no longer be seen as an instantia-
tion of it. In this section, we first introduce our model and then discuss its applicability
on the API retrieval problem.

3.2.1. Normalized Types

The type fingerprint representation that we will discuss further in subsection 3.2.2 re-
quires that every API entity has an assigned proper type. A proper type is a type that
can be inhabited by a value [Pie02, p. 442]. It is not a type constructor and therefore
is not parametrized. E.g., the types Int and Int => String are proper types, but not
List[T] if T is refers to a type parameter.

In order to get a proper type from a parametrized type we use the following substitu-
tion rule:

Definition 1 (Type Parameter Normalization) A type parameter P with the type
bounds L and U such that L <∶ P <∶ U is substituted by

• L if P is used covariant

• U if P is used contravariant

• Unknown if P is used invariant

Furthermore, we normalize proper types to a curried form like A => B => C instead of
(A, B) => C. This simplifies the definition of type fingerprints and destructs implemen-
tation details that are not necessary for API retrieval. This is based on the assumption,
that the user querying for an API entity is usually not interested in whether the func-
tionality is provided by a class member or by a global function. Furthermore, functions
and methods may be implemented in curried or uncurried form. These considerations
lead to following definitions for normalized types of API entities:

Definition 2 (Normalized Value Types) The normalized type of a global value that
is not a class member is just its type.

Definition 3 (Normalized Function and Method Types) The normalized type of
a function or method with the parameter types P

1

to P
n

and a return type R is P
1

=>
... => P

n

=> R.
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Definition 4 (Normalized Constructor Types) A constructor accepting parameters
of type P

1

to P
n

and creating an instance of class R has a normalized type P
1

=> ... =>
P
n

=> R.

Definition 5 (Normalized Member Types) The normalized type of a class member
is the type of a curried function taking an instance of the class and returning a function
with identical parameter and return types as the member.

The currying of functions, methods and constructors is also backed by the equivalence
relations used in [Rit90].
For example, the method declaration

def x(i: Int, f: (Int, Bool) => String): String

defines the API entity x with a normalized type

Int => (Int => Bool => String) => String

A more complete example is the polymorphic method

def head[T](xs: List[T]): T

As the type parameter T is unbound it is implicitly bound by the top and bottom
types � and �, which are Any and Nothing in Scala, head has a normalized type of

List[Any] => Nothing

Altogether, the class definition in Listing 3.1 defines two API entities: The constructor
Box of type Cargo => Box and the member method unbox of type Box => Nothing.
Here, the upper bound of T is explicitly specified as Cargo and the lower bound is once
again Nothing.

class Box[T <: Cargo](content: T){
def unbox: T = content

}

Listing 3.1: A polymorphic class with a type parameter T that must be a subtype of
Cargo

3.2.2. Type Fingerprint Representation

One of the basic assumptions of VSM is that a document can be decomposed into distinct
terms of which each term characterizes the document independently of the other terms.
Hence, to find documents that are relevant to a query, it is su�cient to only consider
what terms are used in the document and the semantic relations between these terms
are not of concern during the actual retrieval process. This assumption allows to use a
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simple representation of the documents, e.g., bag-of-words, and fast retrieval techniques
like inverted indexes.

In order to adopt these techniques to solve the API retrieval problem, we need a
mapping from types to terms that retains enough information to give a good relevance
scoring. The representation we developed and use during this thesis are Type Finger-
prints.

Definition 6 (Fingerprint of Atomic Types) The type fingerprint p
T

of a normal-
ized type T that has no type arguments is p

T

= [(+1, T
name

)].
For example, the type fingerprint of Int is [(+1, Int)]. The plus one term +1 refers to

the variance of the type. We encode the variance (or polarity) of a type with the terms+1 for covariance, −1 for contravariance and 0 for invariance.

Definition 7 (Fingerprint of Types with Arguments) The fingerprint of a nor-
malized type T [A

1

, ...,A
n

] with n type arguments is p = [(+1, T
name

)]⊕ (p
A1 ×A1,var

)⊕
...⊕ (p

An ×An,var

).
Definition 7 uses ⊕ as the list concatenation operator. p

Ai ×Ai,var

is the application of
the variance of the i-th argument to the fingerprint p

Ai . This means that the variance
of each element in p

Ai is multiplied by the variance of A
i

.
Given a type List[A] whereas List is covariant over the type parameter A, the type

fingerprint of List[Int] is according to the second rule [(+1,List), (+1, Int)]. Argument
types at contravariant positions are, for example, function parameter types. Hence, Int
=> String has an according fingerprint of [(+1,=>), (−1, Int), (+1,String)].

Please also note, that variance multiplication is applied recursively. Therefore, the
fingerprint of (Char => Int) => String is

[(+1,=>), (−1,=>), (+1,Char), (−1, Int), (+1,String)]
Or, in other words, the variance of an argument of a function that itself is an argument

again is +1.
One issue with this representation is that the specificity of the => type becomes ex-

tremely low. Almost all normalized definitions in a programming library are of a function
type and the document frequency of (+1, =>) would therefore be almost equal to the
size of the document collection. In order to make queries more specific where a user
searches for functions accepting callbacks, we additionally use Definition 8 to define
fingerprints.

Definition 8 (Fingerprint of Function Types) The type fingerprint of a normal-
ized type (A

1

, ...,A
n

) => R that is not by itself an argument type of a function type is
p = (p

A1 × −1)⊕ ...⊕ (p
An × −1)⊕ p

R

.

This results in fingerprints that do not include the (+1,=>) terms of the outermost
function applications. For instance, A => B => C becomes [(−1,A), (−1,B), (+1, C)].
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On the other hand, arrows of inner function calls are preserved: (A => B) => C becomes[(−1,=>), (+1,A), (−1,B), (+1, C)].
In summary, a type fingerprint is a unordered list of tuples (variance, type). We use

this representation to define the dimensionality of a term vector in our VSM implemen-
tation.
For further discussions, we use a shorter notation <variance><type> where the vari-

ance is encoded as + for covariant, - for contravariant and / for invariant. E.g., the
fingerprint [(+1,A), (−1,B), (0, C)] is written as +A, -B, /C.

3.2.3. Justification of Type Fingerprints

The discussion about type fingerprints did, up to now, not include the question, whether
this representation retains enough information to successfully retrieve API entities with
a similar type. Naturally, we believe that the answer to this question is “yes” and the
strongest point speaking for this assumption is that we achieved reasonably good results
when testing the approach with a test collection. But there are also arguments for type
fingerprints from a more theoretical point of view.
First, the variance with which a type occurs in a signature is an important indicator

on how the type is used. In general, covariance indicates that the caller receives or
reads the according value and contravariance indicates writing or submitting a value.
Accordingly, a value at an invariant position is both read from and written to. The
impact of the variance can be seen when comparing the fingerprints of the following four
declarations:

def m1(a: Int): Unit -Int, +Unit

def m2(): Int +Int

def m3(f: () => Int): Unit -=>, -Int, +Unit

def m4(f: Int => ()): Unit -=>, +Int, +Unit

Both m1 and m3 eventually expect that the user passes a value of type Int. Whereas
m1 directly accepts an Int argument, m3 takes a function that returns an Int if called.
This is represented in both fingerprints by the term -Int. On the other hand, m2 and
m4 both return an Int as indicated by the +Int term in the according fingerprints.
Additionally, many type constructors in Scala (and other modern programming lan-

guages) are designed such that they only allow either read or write access on their boxed
types. Thus, the read/write semantics of variance annotations apply transitively:

def m5(a: List[Int], b: Promise[Char]): Unit

The fingerprint terms of the first argument are -List and -Int because List[T]

is covariant over T. On the other hand, a Promise[T] is a handle that eventually can
complete a Future[T] [HPM+12]. It is contravariant over T and there are only operations
defined on a promise that accept either a T or an error. Thus, a caller of m5 receives an
Char value through the completion of the promise which explains the resulting fingerprint
terms -Promise and +Char. The complete fingerprint of m5 is
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-List, -Int, -Promise, +Char, +Unit

Second, creating type fingerprints is not such a destructive operation as one would ini-
tially think, because the variance of the atomic types is retained. The number of possible
type signatures matching a certain fingerprint is usually quite small. For instance, there
is only one possible type signature whose fingerprint exactly matches -Int, +Unit: Int
=> Unit.

The main loss of information typically happens during the substitution of type param-
eters by their upper and lower bounds. This is probably the greatest liability of the type
fingerprint representation and can influence accuracy when searching for highly generic
signatures with more than one type parameter involved. For instance, a polymorphic
declaration of foldLeft in Scala is

def foldLeft[A, B](as: List[A], init: B, f: B => A => B): B

which has a normalized type of

List[Any] => Any => (Nothing => Nothing => Any) => Nothing

This type is not distinguishable from the normalized type of foldRight. Thus, query-
ing for foldLeft inevitably yields the same score for foldLeft and foldRight which is
probably not what a user would expect.

Altogether, the information loss due to the type fingerprint transformation is not too
severe when working with libraries that have a similar level of genericity as the Scala
standard library. For instance, the List class in the Scala collection library defines
177 operations with 118 distinct type signatures (including inherited members). When
further transforming these signatures we get 107 distinct fingerprints. From these fin-
gerprints there are only 7 that are derived from di↵erent types. Furthermore, almost all
of these fingerprint collisions occur on operations that have very similar semantics like
foldLeft/foldRight and reduceLeft/reduceRight.

The only exceptions include methods inherited from Java’s Object type that do not
leverage the full capacities of the type system. One exception is equals and contains:

def equals[A](as: List[A], other: Any): Boolean

def contains[A](as: List[A], a: A): Boolean

Both methods share the fingerprint -List, -Any, -Any, +Boolean and are therefore
not distinguishable during type retrieval. Although, the signature of equals, which is
inherited from Java’s Object, is too generic in most cases and would be considered bad
practice in modern Scala code.
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Any

Int String Set[Int]

BitSet

Figure 3.1.: Simplified type hierarchy as used in the sample queries

3.2.4. Type Queries

We interpret querying an API for a type T as asking for all entities e for which e ∶ T
holds. Or in other words, asking for all entities that can be assigned to a variable of type
T . Given a type system that uses subtype polymorphism, this also includes all entities
of a subtype of T . Hence, given an entity e ∶ U , e ∶ T also holds if U <∶ T .
If we use the fingerprint representation of a query type T as the query vector, we can

retrieve entities that are of a similar type to T . This is demonstrated in Table 3.2. t
1

encodes a entity of type BitSet => Set[String] and t
2

is of type Set[Int] => Int

=> String. The set of terms used in both entities form the vocabulary V . Each element
of a term vector indicates the term frequency of the term at the according position in
V . Finally, q encodes the query type Set[Int] => String.

V = { -BitSet -Set -String -Int +Set +String }
t
1

= ( 1 0 0 0 1 1 )
t
2

= ( 0 1 0 2 0 1 )
q = ( 0 1 0 1 0 1 )

Table 3.2.: Example query vector q and two terms t
1

and t
2

Without defining the specific similarity function, we can see, that t
2

is probably more
similar to q. In fact, the function represented by t

2

di↵ers only in the additional String
parameter from q.
Unfortunately, this approach does only retrieve entities that inhabit the query type T

but none that inhabit a subtype of T. To also include these types, we can create a query
vector for each subtype of T and use each of these vectors to query for terms.
Given the inheritance hierarchy as shown in Figure 3.1, the query

BitSet => String

has the following subtypes:
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Set[Int] => String

Set[Any] => String

Any => String

Note, because => is contravariant over its parameter type, we have to substitute the
first type argument with its basetype. Mapping these alternative query types to the
according fingerprint results in a total of four query vectors as illustrated in Table 3.3.
While the original query vector q

1

mainly overlaps with t
1

, there is now also some
similarity between q

2

and t
2

.

V = { -BitSet -Set -String -Int -Any +Set +String }
t
1

= ( 1 0 0 0 0 1 1 )
t
2

= ( 0 1 0 2 0 0 1 )
q
1

= ( 1 0 0 0 0 0 1 )
q
2

= ( 0 1 0 1 0 0 1 )
q
3

= ( 0 1 0 0 1 0 1 )
q
4

= ( 0 0 0 0 1 0 1 )

Table 3.3.: The expanded queries q
1

to q
4

While this approach is suitable for giving a picture of the underlying idea, it is in-
applicable because the number of possible subtypes explodes given a query type of a
certain complexity. For example, if T has a total of 3 subtypes, there are already 32 = 9
subtypes for the tuple (T, T).

3.2.5. Query Expressions

This is why we moved away from the idea of representing a query type as a term vector.
Instead of that, we use an expression to represent the query and all possible subtypes.
Furthermore, the expression incorporates the similarity function sim such that the ex-
pression can be evaluated against an entity’s type fingerprint to calculate a score.

We use a recursive data structure to represent query expressions:

Sum(parts: List[Max | Leaf])

Max(alternatives: List[Sum])

Leaf(v: Variance, tpe: String, boost: Float)

def sum(t: NormalizedType, v: Variance) =
Sum(
Leaf(v, t.name) :: t.arguments.map(arg => max(t, arg.variance * v))

)

Listing 3.2: Construction of a sum node
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⊕

+Map � �

Figure 3.2.: Construction of a Sum node for the type Map[A, B]

A Sum node is a composite of at least one part that is either a Max or a Leaf node. To
construct a Sum node we can use a function sum as sketched out in Listing 3.2.
sum creates a Sum node that contains a Leaf for the type itself and a Max node con-

structed by max for every type argument. E.g., sum(Map[A, B], Covariant) creates a
tree as shown in Figure 3.2. This illustration uses the ⊕ operator to indicate Sum nodes
and � to indicate Max nodes.
Furthermore, a Max node contains one or more Sum nodes and is constructed by the

max function (Listing 3.3).

def max(t: NormalizedType, v: Variance) = {
val alternativeTypes = v match {
case Covariant => subtypesOf(t)
case Contravariant => supertypesOf(t)
case Invariant => t :: Unknown :: Nil

}

Max(sum(t, v) :: alternativeTypes.map(alt => sum(alt, v)))
}

Listing 3.3: Construction of a max node

max looks up types that can be used instead of the original type t. This includes sub-
types of t if t appears in a covariant position or supertypes of t if it is used contravariantly.
Type arguments at invariant positions form a special case: They are represented by the
synthetic alternative type Unknown.

def queryExpression(t: NormalizedType) = {
def parts(t: NormalizedType) = t match {
case Function(a, r) => max(a, Contravariant) :: parts(r)
case _ => max(t, Covariant) :: Nil

}

Sum(parts(t))
}

Listing 3.4: Construction of a query expression from a normalized type t
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-Iterable �

⊕

-Any
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�

⊕

+Option �

⊕

+Nothing

+Nothing

Figure 3.3.: Expression tree for the query List[T] => Option[T]

Finally, we use a function queryExpression to construct an expression from a nor-
malized type as shown in Listing 3.4. As discussed in subsection 3.2.2, we don’t want
to include the outermost function applications. This is why queryExpression does not
directly call sum on the input type but rather uses the parts function to get the Max

nodes of all argument and return types of the query function.

An example of a complete query expression is given in Figure 3.3. This tree illus-
trates the expression for the query List[T] => Option[T] with a normalized type of
List[Any] => Option[Nothing]. We assume in this example that List[T] extends
Iterable[T]. Furthermore, every type extends the top type Any and every type is ex-
tended by the bottom type Nothing.

The query expression given in Figure 3.3 may also be written as

⊕(�(⊕(-List, -Any),⊕(-Iterable, -Any),
-Any),�(⊕(+Option, +Nothing),
+Nothing))

Furthermore, we can factor out redundant subexpressions. This is possible because
query expressions are assumed to be distributive over ⊕:
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�(⊕(A,B),⊕(B,X)) = ⊕(�(A,B),X)
Hence, the expression in Figure 3.3 can be simplified to

⊕(�(⊕(�(-List, -Iterable),
-Any),

-Any),�(⊕(+Option, +Nothing),
+Nothing))

Altogether, a query expression is a concise representation of a query that also covers
subtype relationships and does not su↵er from combinational explosion.

3.2.6. Term Weights

Up to now, we have discussed how to create query expressions, but we did not yet
mention how weights are assigned to the leaves of an expression tree. We have identified
four properties that influence the weight of a leaf. Each of these properties is explained
in the following subsections.

Inverse Document Type Frequency

The inverse document type frequency (ITF) is inspired by the IDF statistic (subsec-
tion 3.1.3) and closely related to it. Like IDF, ITF should capture the specificity of a
fingerprint term such that types occurring more frequently in the document collection
can be penalized.
But using the plain number of documents that contain a fingerprint term is not very

accurate in capturing how often a type occurs: Given the types A and B with the subtype
relation B <∶ A. If there are 10 API entities with a normalized type B => Unit and one
entity A => Unit, the fingerprint term -B has a document frequency of 10 and -A one
of 1. As a result, searching for a function B => Unit would overpenalize documents
containing -B. Thus, the function A => Unit probably gets a higher score despite the
fact that there are 10 other entities that have a lower distance to the query type.
In order to incorporate type hierarchies in the document frequency factor we use a

slightly di↵erent notion of specificity:

The specificity of a fingerprint term is the inverse of the probability that the
term will occur in a query expression.

Hence, a term occurring in almost all query expressions like -Any and +Nothing has
a very low specificity.
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Figure 3.4.: ITF as a function of the relative type document frequency P (t)
To determine a term’s probability P (t) we use the type signatures of all entities in

the document collection D as hypothetical queries. We then count the number of the
derived query expressions that contain the term t which results in the absolute document
type frequency df(t). The probability is then

P (t) = df(t)
�D�

This approach has the advantage that it does not require an exhaustive collection of
sample queries and that it remains conceptually close to IDF.

Finally, the inverse document type frequency is

ITF(t) = log
10

10

10P (t) + (1 − P (t))
The term (1−P (t)) is added to normalize ITF(t) in the range [0,1] when P (t) ∈ [0,1]

as shown in Figure 3.4. This is not a necessity but makes it easier to incorporate ITF
in term weights and relate it to the other weighting factors.

Depth Boost

Given a type query with several nested atomic types, one can assume, that not all of
these atomic types are equally relevant to the user’s information need. For example, a
user may use the query List[Int] => String when he is looking for a function that
takes a List and concatenates all elements to a resulting String. In this case, the Int

type argument of List is probably of less relevance than the remaining parts of the
query.
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One possible measurement for weighting the individual parts of a query is the nesting
level in which the type occurs. Thus, a type with a higher nesting level is considered less
relevant. The nesting level of an atomic part of a query type is equal to the number of
enclosing types. Given the example query A[B[C]] => D the atomic types A and D have
a nesting level of 1 because they are enclosed by the => type (the same query can also
be written as =>[A[B[C]], D]). Accordingly, B has a nesting level of 2 and C one of 3.
The according weighting factor is called depth boost which is the inverse of the nesting

level. The depth boost deb(i) of the i-th atomic type in the query type is

deb(i) = 1

l(i) + 1
where l(i) refers to the according nesting level.

Distance Boost

We can assume that a user always searches with the types that are most relevant to
his information need. This would imply that types added to query expressions due to
subtype relations are generally less relevant than the original type in the user query.
We can reflect this assumption by incorporating the distance in the inheritance hierar-

chy between a derived type and the original type into term weights. E.g., the expression
tree in Figure 3.6 represents the query List[T] => Option[T]. During the creation
of the tree we derived alternative types for List[T] (Iterable[T] and Any) and for
Option[T] (Nothing).
The weight factor that we use to reflect this is called distance boost. Once again, we

use the inverse to calculate the distance boost dib(t
o

, t
d

) where t
o

is the original type
and t

d

is the derived type:

dib(t
o

, t
d

) = 1

distance(t
o

, t
d

) + 1
There are several possible approaches to calculate distance(t

o

, t
d

). But an implemen-
tation must adhere to the following constraints:

• distance(T,T ) = 0 for every T

• If S <∶ T and T <∶ U then distance(S,T ) < distance(S,U)
One function that meets this constraint and that we use in our implementation is the

index of t
d

in the class linearization order of t
o

[OZ05]. For example, the type definitions

class A extends B with C

trait B extends D

trait C extends D

trait D

result in a class linearization {A, B, C, D} for A. Hence, distance(A,A) is 0 and distance(A,C)
is 2.
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�

-BitSet ⊕

-Set /Int
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Figure 3.5.: Simplified expression tree for the query Set[Int]

Fractions

Each leaf in an expression tree represents a certain portion of the original type query.
E.g., the query BitSet => expands to the expression tree as shown in Figure 3.5. If
each leaf would be weighted equally, the terms -Set and \Int would be overrepresented.
Hence, the API entity Set[String] => Array[Int] => Unit would receive a higher
score than the entity BitSet => Unit despite the later is much more likely to be a
better match.

To adjust this over-scoring of subexpressions with more leaves than the adjacent subex-
pressions we assign fractions to branches of the expression tree. A fraction indicates what
portion of the original query is represented by a certain branch or leaf.

Fractions are assigned to the leaves of an expression according to the following rules:

• The root node has a fraction value of 1.

• Each child of a Max node receives the same fraction value as the parent node.

• The fraction value of a child of a Sum node with n children is f
p

�n where f
p

is the
fraction value of the Sum node.

When applied on the expression tree in Figure 3.5, the nodes -BitSet and -Any will
each receive a fraction value of 1 and the nodes -Set and /Int a value of 0.5.

Combined Term Weight Factors

Finally, the distinct weighting factors have to be consolidated into one weight per leaf.
Experimenting with various functions revealed that the product of the fraction value of
the leaf and the weighted geometric mean of the remaining factors is a feasible option:

w(l) = l
fraction

∗ exp�wdib

lnl
dib

+w
deb

lnl
deb

+w
ITF

lnl
ITF

w
dib

+w
deb

+w
ITF

�
l
dib

refers to the distance boost associated with the leaf l, l
deb

to the depth boost
and l

ITF

to the inverse document type frequency. The according weights w
dib

, w
deb

and
w
ITF

are positive rational numbers and can be adjusted to improve the e↵ectiveness of
the retrieval model (see evaluation (chapter 5)).
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Despite the empirical evidence that supports the use of this function, there is also
some rationale behind this choice. First, the geometric mean is well-suited for averaging
normalized values and ratios [FW86]. Because the weighting factors represent a relative
relevancy of a term (a ratio), this seems like a good match.
Second, applying the fraction factor after averaging the remaining factors seems arbi-

trary but it ensures that no branch of the expression tree will ever dominate all other
branches. Including the fraction into the mean with a relatively low weight results in
high scores for deeply nested terms with a high ITF value. On the other hand, a rel-
atively high weight for the fraction factor would address this issue but the remaining
factors would be underrepresented.

3.2.7. Evaluating Query Expressions against Type Fingerprints

To score an API entity against a type query we have to apply the type fingerprint to the
according query expression. Evaluating a query expression means to mark the leaves in
the expression tree such that the sum of the scores of the marked leaves is maximized.
Furthermore, the following constraints apply when marking leaves:

1. For each term in the fingerprint at most one leaf can be marked.

2. A Leaf(v
q

, t
q

) can only be marked if there is a fingerprint term (v
p

, t
p

) such that
v
p

= v
q

and t
p

= t
q

.

3. Only one subexpression of a Max node can contain marked leaves.

This optimization problem is surprisingly hard. The third constraint prevents us
from using a local approach that evaluates subexpressions whose result can be merged
together: Switching a mark in one subexpression may lead to modifications of marks in
several other subexpressions. This gives the problem an appearance of non-locality that
is inherent in many NP-hard problems. Thus, we suspect that finding the maximum
score of a type fingerprint given a query expression is very likely to be part of the set of
NP-hard problems.
Fortunately, we have found a good heuristic to attack this problem e�ciently if we

can make some restrictions on the scores assigned to the leaves. We will introduce this
heuristic in subsection 4.6.5 and, for now, just assume that there is an algorithm that can
evaluate query expressions in O(n∗m) where n is the number of terms in the fingerprint
and m is the size of the expression tree.
Figure 3.6 shows how the expression tree derived from the query List[T] => Option[T]

can be evaluated with the fingerprint -List, -Any, -Any, +Nothing (derived from the
type List[T] => T => Option[T]). The tree also includes the score of each leaf in su-
perscript and the optimal marking is highlighted in green. Thus, the optimal score of
the fingerprint in this example is 1 + 0.1 + 0.5 = 1.6.
Note, that not all terms of the fingerprint resulted in a marked node. For the second

occurrence of -Any there is no matching leaf that can be marked without violating the
third constraint that only one subexpression of a Max node can contain marked leaves.
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Figure 3.6.: Expression tree for the query List[T] => Option[T] marked with the fin-
gerprint -List, -Any, -Any, +Nothing

3.2.8. Fingerprint Length Normalization

Because fingerprint length normalization factor is applied per document, it is not part of
the term weight. Nevertheless, it is one of the key factors contributing to a good scoring
function.

Like document length normalization, fingerprint length normalization incorporates
the observation that additional terms in the document vector increase the possibility of
matching a query term. Applied to type retrieval, we can state that API entities with
more parameters are more likely to include fingerprint terms occurring in a query. This
also applies to entities with more complex parameters and return types (e.g., List[Int]
instead of Int).

We reflect these observations by incorporating the length of the fingerprint into a
normalization factor for each document. But opposed to document length normalization
as discussed in subsection 3.1.5, we can also make an assertion about the length of the
expected fingerprint. Hence, we assume that the best matching entities should have a
fingerprint of approximately the same length as the query’s fingerprint. This is why
we use the square of the di↵erence between the query fingerprint length and the entity
fingerprint length to normalize document scores:

norm(d) = 1

(w
norm

(�fingerprint(q)� − �fingerprint(d)�))2 + 1
The additional w

norm

weight is used to control the influence of norm(d) on the final
score. Two examples of the norm(d) function with an expected fingerprint length of 5
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Figure 3.7.: The fingerprint length normalization function with a query fingerprint length
of 5 and di↵erent values for w

norm

and a weight of 0.1 and 0.2 respectively is given in Figure 3.7.

3.2.9. Summary

During the development of our API retrieval model we had to abandon the idea of rep-
resenting types as a composite of independent and atomic terms as suggested by VSM.
Thus, the score contributed by an individual fingerprint term is no longer independent
of the scores contributed by the remaining terms. Any attempt to implement a retrieval
model that retained this assumption was either impractical due to combinatorial ex-
plosion (as discussed in subsection 3.2.4) or failed to fully incorporate the semantics of
subtype polymorphism.

Probably the main strength of the resulting fingerprint evaluation model is that sub-
type relations can be fully incorporated during the retrieval process. On the other
hand, support for parametric polymorphism is weaker as type parameters have to be
substituted by proper types during type normalization which leads to a significant loss
of information. Nevertheless, the fingerprint evaluation model still yields results with
a high enough precision to be a useful tool for retrieving functionality based on type
signatures (see chapter 5).

Figure 3.8 illustrates the retrieval process with the various representations for types
introduced in this chapter.
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Figure 3.8.: Overview of the various data structures associated with the fingerprint eval-
uation model with the dataflow during index and query time

3.3. The Fingerprint Evaluation Model and Scala

As the fingerprint evaluation model has been designed with Scala’s type system in mind,
the model is already well suited for supporting the basic language features. Nevertheless,
Scala o↵ers some additional features that also have to be considered to successfully
retrieve entities from Scala libraries. This section discusses those features and how they
are integrated into the fingerprint evaluation model.

3.3.1. Implicit Conversions

Implicit conversions are a common feature in most programming languages. Typically,
they are used to allow expressions of certain types to be used in a context that expects
another type. For example, the declaration val a: Long = 1 type checks successfully
even though the expression 1 is of type Int. Compilers do often apply these implicit
conversions if they can be performed without any loss of information.

We can identify, amongst others, four kinds of implicit conversions that are commonly
used in various programming languages:

Widening Subtype Conversion
Given the types S and T such that S <∶ T , an expression of type S can be used
wherever a type T is expected. This conversion is sometimes also referred to as
“Widening Reference Conversion” and is a consequence of subtype polymorphism.

Widening Coercive Conversion
This is a conversion between the types S and T that do not have a subtype relation.
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An implicit conversion can be applied if there is an injection from S to T. Hence,
every value in S can be represented by a distinct value in T. For example, many
languages provide implicit widening conversions for primitive types like from Int

to Long or from Long to Double but not vice versa.

Adaptive Conversion
An adaptive conversion may be used if there exists a bijection between S and T.
Hence, every value in S can be represented by a distinct value in T and vice versa.
Java’s automatic boxing and unboxing can be seen as an example of this conversion.
For example, the primitive type int is implicitly converted to the reference type
Integer if a reference type is required.

Pragmatic Narrowing Conversion
Some languages also provide destructive implicit conversions in some context. For
example, Java allows to use any object as an operand to the string concatenation
operator: In the expression "hello " + new Subject("World"), the right hand
side of the operator is implicitly converted to a String by calling the toString

method defined on Subject.

Scala o↵ers a generalization of the latter three kinds that allows user to define custom
implicit conversions [Ode14, section 7.3]. If a user writes an expression of a type A that
does not match the expected type B of the current context, the Scala compiler searches
the scope for a function or method defined with the implicit keyword of type A => B.

object BoolishConversions {
implicit def int2bool(i: Int): Boolean = i != 0

}

object App {
// brings int2bool into scope
import BoolishConversions._

val i: Int = 1

// if expects a condition of type Boolean
if(i)
println("i is truish")

}

Listing 3.5: A user-defined implicit conversion from Int to Boolean

Listing 3.5 shows an example of a user defined implicit conversion from Int to Boolean.
This conversion can be categorized as a pragmatic narrowing conversion. It may add
some value for users as it allows a terser syntax for using integers as conditions. But it
is narrowing because many values will map to true.

class IntOps(i: Int) {
def isTruish = i != 0
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}

object IntOps {
implicit def int2intOps(i: Int) = new IntOps(i)

}

object App {
// brings int2intOps into scope
import IntOps._

val i: Int = 1

if(i.isTruish)
println("i is truish")

}

Listing 3.6: Extending Int with a isTruish member

Another use of implicit conversions is to extend existing classes with new functionality
as shown in Listing 3.6. In this example, the expression i.isTruish causes the compiler
to look for an implicit conversion that converts an Int to a type with the member
isTruish. This use of implicit conversions is frequently applied in the Scala Standard
library and also known as the “Enrich-my-library” pattern.

Please note, that this section is only a very brief introduction to implicit conversions
and omits many details of the language specification. First, there are further subtleties
concerning how implicit conversions are resolved and how they are prioritized. And
secondly, Scala defines additional implicit conversions that are hard-wired into the com-
piler: For example, narrowing conversions from Int literals to Char or Byte and the
eta-expansion that converts method types to function types (see [Ode14, section 6.26]
for a complete list).

In order to support implicit conversions during type retrieval, we leverage the strong
mutuality of implicit conversions and subtyping. In fact, a stricter form of implicit
conversion is discussed in type theory under the term coercive subtyping [LSX13].

From a less formalized perspective, implicit conversions often follow both interpreta-
tions of subtyping:

• The subset relation between values in the subtype S and values in the supertype
T .

• Inheritance of the operations defined on the supertype T to the subtype S: Every
operation applicable on a T is also applicable on a S.

E.g. the set of values of type Int is a subset of the values that can be represented by
a Long, or Int ⊆ Long. Accordingly, Long can be seen as a subtype of Int.

The inheritance interpretation of subtyping can be observed on the int2intOps con-
version given in Listing 3.6. Through implicit conversion, all operations defined on
IntOps become applicable on Int and therefore, we can conclude that Int <: IntOps.
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Because int2intOps is a bijective coercion from Int to IntOps, the subset interpretation
of subtyping also holds in this case.
As Scala also allows the definition of narrowing conversions the subset interpretation

may also be violated by a user defined conversion. For example, int2bool in Listing 3.5
defines an implicit conversion despite Int �⊆ Bool. Fortunately, this is not an issue when
it comes to API retrieval because we are only concerned about the operations defined
on a type. The values that inhabit a type, on the other hand, are not of concern.
Altogether, we use the following two measures to incorporate implicit conversions into

our API retrieval model:

• An implicit conversion from A to B defines the synthetic subtype relation A <: B.

• The distance function discussed in section 3.2.6 is dist(A,B) = 0.5 if there is an
implicit conversion from A to B.

The distance factor of 0.5 is relatively arbitrary but helps to ensure that members of
the original type are listed below members from the converted type. Furthermore, 0.5
is lower than the distance to any direct sub or super type.

3.3.2. Implicit Parameters and Type Classes

With implicit parameters, Scala o↵ers a relatively unique language feature. A method
parameter defined with the implicit keyword can be automatically passed by the com-
piler if there exists an implicit value of a matching type in the callers scope. This is best
explained by an example as given in Listing 3.7.

def check(i: Int)(implicit max: Int) =
if(i > max) println("the number is too big")

{
check(1) // error, no implicit value of type Int in scope
check(1)(10) // OK, explicitly passing an implicit parameter

}

{
implicit val threshold: Int = 100

check(1) // OK, implicit value of type Int is in scope
check(1)(threshold) // OK, equal to the above expression

}

Listing 3.7: Contrived example of a function requiring one implicit parameter

The function check defines one implicit parameter max of type Int. An according
argument can now either be passed explicitly as in check(1)(10) or through an implicit
value in scope (threshold in this case). The lookup of implicit values follows the same
scoping rules as for other identifiers. Thus, implicit values can also be inherited or
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imported. If no implicit value of a matching type is in scope, the compiler also considers
the implicit scope of the expected type which includes, for example, the companion
object of the expected type (a full overview of the lookup rules for implicit values is
given in [Ode14, section 7.2]).

In summary, implicit parameters are a way to parameterize methods without too much
boilerplate code. Since their introduction in Scala 2.0, language users found many ways
to leverage implicit parameters:

Configuring methods with semi-global settings
Some methods depend on configuration parameters that can be shared between
large parts of a program. For example, many operations on Scala’s Future require
an ExecutionContext that is able to execute asynchronous tasks. For most use
cases the default execution context that executes tasks on a thread pool provides
a suitable behavior. But in some cases, e.g. having many tasks that perform
blocking I/O, a user might want to provide a di↵erent implementation. Because
the execution context is provided through an implicit parameter, users of Future
just have to import the appropriate execution context once and it is automatically
passed when required.

Sharing a Context Variable
Sometimes, a computation requires a variable that describes the context in which
it is executed and that has to be passed to every subsequent function call. For
example, the logic of an HTTP request handler may call several functions that
extract information from the current request:

def handle(req: Request) = {
if(path(req) == "/") {
respond("index.html", req)

} else {
val name = queryParameter("name", req)
// ...

}
}

Using implicit parameters, this can be simplified while still using purely functional
methods:

def handle(implicit req: Request) = {
if(path == "/") {
respond("index.html")

} else {
val name = queryParameter("name")
// ...

}
}
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The Type Class Pattern
The type class pattern is an answer to the problem of providing additional opera-
tions for a range of types without the need of directly modifying the type defini-
tions. The pattern is inspired by Haskell’s type classes but translates the language
construct to object-oriented programming. It has probably been introduced the
first time in [Ode06].

One example of a type class in the Scala standard library is Ordering:

trait Ordering[T] {
def compare(a: T, b: T): Int

}

An instance of Ordering[T] provides a method compare that takes two Ts and
returns an Int that indicates whether both arguments are equal (0), the first
argument is greater (a value > 0) or the second argument is greater (a value < 0).
We can now define a generic method that depends on the Ordering trait:

def max[T](a: T, b: T)(implicit o: Ordering[T]): T =
if(o.compare(a, b) >= 0)
a

else
b

This method can be invoked with any type T for which exists an implicit instance
of Ordering[T]. One interesting instance may be Ordering[Int]:

implicit val intOrdering = new Ordering[Int] {
def compare(a: Int, b: Int) = a - b

}

Given this instance, we are able to use the max function on Int: max(1, 2) which
the compiler will expand to max(1, 2)(intOrdering).

One strength of this pattern is, that type class instances can nicely be composed:

implicit def pairOrdering[T, U](
implicit ot: Ordering[T], ou: Ordering[U]) =

new Ordering[(T, U)] {
def compare(a: (T, U), b: (T, U)) =
ot.compare(a._1, b._1) match {
case 0 => ou.compare(a._2, b._2)
case r => r

}
}

This definition provides an implicit Ordering instance on pairs (T, U) given there
exists an according instance for both T and U.
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Because type class instances are just values, it is also possible to transform existing
instances:

def reversed[T](implicit o: Ordering[T]) = new Ordering[T] {
def compare(a: T, b: T) = -o.compare(a, b)

}

To find the smaller of two pairs of int it is now su�cient to call

max((1, 2), (1, 1))(reversed)

which will be expanded by the compiler to

max((1, 2), (1, 1))

(reversed(pairOrdering(intOrdering, intOrdering)))

Naturally, this pattern can also be applied in languages without support for implicit
parameters as it helps to maintain a high reusability of components and high
cohesion. In fact, the interface java.util.Comparator<T> is Java’s equivalent to
the Ordering type class.

Especially the type class pattern has gained some popularity and is frequently used in
various Scala libraries. Also the Scala standard library defines, beside Ordering, several
other traits whose use more or less resembles the type class pattern.

Technically, implicit parameters do not directly a↵ect the working principle of our
retrieval model. Types of implicit parameters can be incorporated into type fingerprints
like any other parameter type. Hence, the fingerprint of

def max[T](a: T, b: T)(implicit o: Ordering[T]): T

becomes

-Any, -Any, -Ordering, /Unknown, +Nothing

Nevertheless, the frequent use of implicit parameters brings up two issues that a↵ect
how well a user’s information need can be answered:

• Using implicit parameters for configuration reduces the accuracy of the length
normalization factor. Implicit configuration parameters increase the length of an
entity’s fingerprint but they are unlikely to be considered by users formulating
a search query. This may lead to a lower ranking for an entity with an implicit
parameter that would otherwise achieve a top ranking because the same signature
without the implicit parameter would perfectly match the query.

• Functionality provided via type classes is only discoverable if the user is aware of
the according type class. For example, the max method mentioned above does not
match a query like (Int, Int) => Int, despite the method can be used like a
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method with exactly this signature given there is an instance of Ordering[Int]
in scope. To successfully retrieve the max method a user has to search with a
query like (A, A, Ordering[A]) => A which requires that he knows about the
Ordering type class.

The first issue is currently addressed by choosing a sensible value for the length nor-
malization weight that does not over-penalize entities with additional parameters. While
this is in many cases su�cient, there is still some potential for a more sophisticated op-
timization. Another approach that did not result in the expected precision gain was to
only incorporate fingerprint terms derived from non-implicit parameters into an entity’s
fingerprint length.
The second issue can be addressed by an additional transformation on API entities

that is described in the next subsection.
Another approach that has been considered is to express type class implementation

as subtyping. Hence, Int would be treated as a subtype of Ordering. In fact, Hoogle
follows this approach to model Haskell’s type classes [Mit11]. But this approach has
some flaws when transfered to Scala and our retrieval model. Mainly, this approach
collides with upper bounds on type parameters. Currently, a type parameter can be
constrained by at most one upper bound which is used as a substitute for the type
parameter at contravariant positions when transforming generic signatures to a proper
type (see subsection 3.2.1). But type classes can introduce additional constraints that
also have to be incorporated into the proper type.

3.3.3. Type Class Instantiation

As discussed in subsection 3.3.2, the frequent use of the type class pattern and similar
techniques complicates the retrieval of certain API entities. To overcome this limitation
we create additional synthetic API entities for every type class instance and every entity
that expects an instance of the type class as an implicit parameter. For example, given
the Ordering type class introduced in the previous subsection and the definitions

implicit val intOrdering: Ordering[Int] = ???

and

def max[A](xs: List[A])(implicit o: Ordering[A]): A

it is possible to derive a synthetic entity

def max(xs: List[Int])(implicit o: Ordering[Int]): Int

whose constrained type parameter A has been substituted by the type class member
Int. With these synthetic entities added to the index, it is possible to answer queries
like List[Int] => Int with a higher accuracy.
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Because there is no need to create synthetic entities for non-generic implicit parame-
ters, we use the term type class in the further discussion to address implicit parameters
that can be substituted. Though, the term describes a slightly di↵erent concept to type
classes in Haskell. Altogether, we use the following nomenclature:

Type Class
A type with at least one type parameter. E.g., Ordering[T] or Eq[T, U].

Type Class Instance
An globally accessible implicit value, object or method of a type with at least one
type argument that is not a type variable. E.g.,

implicit val intOrdering: Ordering[Int] = ???

defines a type class instance Ordering[Int]. But

implicit val i: Int = 1

does not define an instance because Int has no type arguments. Also,

implicit def list[T]: List[T]

dose not define a type class instance because T is a type variable.

Implicit parameter lists are ignored in the instance definition. Thus,

implicit def listOrdering[T](implicit o: Ordering[T]):

Ordering[List[T]]

defines an instance Ordering[List[T]].

If the instance definition is a method with at least one non-implicit parameter, it
defines an instance of the eta-expanded type of the method.

implicit def opt2list[T](o: Option[T]): List[T]

defines an instance of Option[T] => List[T].

Type Class Member
A type for which an instance definition for a type class exists. E.g., Int is a
member of the type class Ordering[ ]. If a type class uses more than one type
parameter, an instance definition defines multiple members. Hence, an instance of
type Eq[Int, String] defines Int as a member of Eq[ , String] and String as
a member of Eq[Int, ].

Every implicit and globally accessible entity defines potentially one or more type class
instance. Because type classes can also extend other type classes, it is necessary to
consider all base types as potential type of a type class instance. For example, given the
following three type class definitions
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trait PartialOrdering[T]

trait Equal[T]

trait Ordering[T] extends PartialOrdering[T] with Equal[T]

the implicit value

implicit val intOrdering: Ordering[Int] = ???

defines in total three type class instances PartialOrdering[Int], Equal[Int] and
Ordering[Int].
Given the list of all types of the defined type class instances, it is now possible to

instantiate all entities that use at least one of the according type classes. Instantiating
refers in this context to substituting all type parameters of the entity by the according
type arguments of the type class instance. E.g., instantiating the entity

def notEqual[A, B](a: A, b: B)(implicit eq: Eq[A, B])

with the type class instance Eq[Int, String] means to substitute all occurrences of A
by Int and all occurrences of B by String. This results in the non-generic entity

def notEqual(a: Int, b: String)(implicit eq: Eq[Int, String])

It is also possible that the substitution results in additional type parameters. E.g.
instantiating the max method described above with Ordering[Map[K, V]] results in

def max[K, V](xs: List[Map[K, V]])

(implicit o: Ordering[Map[K, V]]): Map[K, V]

Despite type class instantiation has, for a lack of time to provide a stable implemen-
tation, not been included in the final version of our prototype, a partial implementation
of this feature already yielded promising results.

3.3.4. Context and View Bounds

Because the type class pattern is such a frequently used language idiom, Scala o↵ers
with context bounds an alternative notation for briefly define type parameters that are
bounded by an implicit parameter.
A type parameter T can be defined with one or more context bound which is written

as a colon : followed by a bound B. This type parameter can then be instantiated only
if there exists an implicit value of type B[T] [Ode14, section 7.4]. For example, the
max function mentioned in subsection 3.3.3 can be declared more briefly with a context
bound:

def max[T: Ordering](xs: List[T]): T = ???

This declaration is desugared by the compiler to
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def max(xs: List[T])(implicit $evidence: Ordering[T]): T

whereas $evidence refers to a uniquely generated identifier.
View bounds are a similar notation to require that a type parameter has to be implic-

itly convertible to a given type. Although, view bounds will soon be deprecated in an
upcoming release of Scala [Sca13].

A type parameter T can be defined with one or more view bounds which is written as
T <% B where B is a type. This type parameter can only be instantiated if there is an
implicit value of type T => B [Ode14, section 7.4]. The following method defines a view
bound on the type parameter T:

def stringify[T <% String](x: T) = ???

which is equivalent to

def stringify[T](x: T)(implicit $evidence: T => String) = ???

It is also possible to mix lower and upper type bounds with view and context bounds
in the same type parameter definition.

Concerning our API retrieval model, view and context bounds do not introduce addi-
tional complexity as they can always be expressed by an according implicit parameter.
Thus, we will use the desugared representation of type signatures to build the index.

3.3.5. Variadic Parameter Lists

Scala allows to define method parameter lists with variable arity by appending the *

modifier to the type of the last parameter in the list. For example,

def sum(is: Int*): Int

defines a method that accepts an arbitrary number of Int parameters. This method can
either be called by providing zero or more Int arguments like sum(1,2,3) or by passing
a subtype of scala.Seq followed by the * type ascription [Ode14, section 4.6.2]:

val is = List(1, 2, 3)

sum(is: _*)

To support variadic parameter lists, we use a synthetic type <repeated>[T] to rep-
resent parameters defined with the * modifier. Hence, the normalized type of sum is<repeated>[Int] => Int. This ensures that both queries Int => Int and Int* =>
Int will match sum.

Furthermore, we want that queries like List[Int] => Int also match sum because
List[Int], as a subtype of Seq[Int], is a valid argument where a Int* is expected.
This is obtained by creating additional implicit conversions from all subtypes of Seq to<repeated>.
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3.3.6. Summary

This section explained how some extended features of a particular type system can be
integrated into our retrieval model. This is also an important requirement for targeting
additional programming languages.
Note, that we purposefully omitted some features of Scala’s type system that we do

currently not represent in our model. As already mentioned in subsection 2.3.2, this
includes structural types because they are rarely used in most Scala libraries. Further-
more, higher kinded type parameters are also not yet incorporated in the model. This
was, at one hand, a necessity as their expansion to query expression may never terminate
when implemented correctly. And, at the other hand, a pragmatic decision because we
assume that the type class instantiation discussed in subsection 3.3.3 should cover most
cases where a proper expansion of higher kinded types would improve search results.
Altogether, this chapter laid the conceptual foundation for our prototype implemen-

tation described in the next chapter. Furthermore, the evaluation of the retrieval model
is discussed in chapter 5.
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This chapter describes our prototype implementation of the fingerprint evaluation model
for the Scala programming language, written in Scala. It provides a web service called
“Scaps”, which is short for Scala API Search. Scaps allows users to invoke indexing jobs
of Scala libraries and issue search queries against these indexed libraries.

4.1. Overview

The Scaps architecture is divided into various components as illustrated in Figure 4.1.

Figure 4.1.: High-level overview of the Scaps components

Scaps Core
Implements the fingerprint evaluation model. The core library also provides meth-
ods to extract entities from Scala source files and for managing the Lucene indexes.
Lucene is integrated into Scaps Core as a library dependency.

Evaluation Tools
Provides command line tools for evaluating the search engine against a test collec-
tion of queries and relevant entities.
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Webservice
Exposes the Control and User APIs as HTTP services and manages an instance of
the search engine. Also renders the Web UI and provides it as a web application.

Control API
Defines methods for managing indexes. This includes the invocation of new index
jobs and clearing the indexes.

User API
Defines methods for querying indexes.

Scaps SBT Plugin
A plugin for the Scala Build Tool (SBT) that is a client of the Control API. The
plugin uses SBT’s infrastructure for resolving project dependencies and fetching
source files from repositories.

Web UI
A website allowing users to query the indexed libraries.

This architecture has been chosen to create solution that can easily be extended and
integrated into other environments. Thus, the core library may also be used to imple-
ment an Eclipse plug-in that can operate the indexes without depending on the SBT
integration. Furthermore, the architecture allows to create additional clients for the
Control and User APIs. A lightweight IDE integration of Scaps may just o↵er a search
field that queries an online service without the possibility to index custom libraries.
The separation between Control and User API serves mainly as a replacement for a

proper access rights management. This allows to expose the APIs on di↵erent ports
such that access to the Control API can be restricted via network configuration. Hence,
operations that are potentially harmful to the availability and functionality of the service
are only exposed through the Control API. Uncritical operations, on the other hand, are
provided through the User API.

4.2. Package Structure

From the architecture described above emerged the package structure shown in Fig-
ure 4.2.
scaps.webapi defines the Control and User APIs as well as the data model shared by

all dependent packages. webapi is defined in a separate project and therefore available
as a library dependency for other projects.
scaps.featureExtraction and scaps.searchEngine constitute the Scaps core func-

tionality and are referred to as the Scaps core library. featureExtraction provides
methods for extracting API entities from source files. searchEngine covers query pro-
cessing and management of the Lucene indexes.
The scaps.sbtPlugin and scaps.evaluation packages represent the according com-

ponents mentioned in section 4.1.
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Figure 4.2.: Package dependencies in the Scaps project

scaps.webservice.ui is the implementation of the User API web client. Because
we use the Scala.js compiler plugin to compile Scala code to executable JavaScript, it is
possible to also reuse the data model defined in webapi on the web client.

And finally, the scaps.webservice package represents the Webservice component.
webservice depends on webservice.ui as the service also renders the web client.

4.3. Data Model

Our data model has been designed to meet some particular requirements. It should be
possible to represent types and API entities in a relatively language agnostic way. Hence,
specific language features should be abstractable. E.g., whether a type has been defined
by a class, a trait or an interface is not of concern for our retrieval model. Also, there
is no need to distinguish between class members and global, static values or between
values, methods and functions.

Furthermore, transformations of types should be easy to define, as these transforma-
tions are a central processing step of the retrieval model. Examples of such transforma-
tions are eta-expansions and type normalization.

Altogether, we need a notion of types and values in our data model together with the
ability to represent the two fundamental type system concepts of subtyping and bounded

57



CHAPTER 4. IMPLEMENTATION

parametric polymorphism.

Figure 4.3.: Data model used by the Scaps components

As a result of these considerations we came up with a data model whose central entities
are illustrated in Figure 4.3.
We consider an API as a collection of Definitions that define either a value (ValueDef)

or a type (TypeDef). Each definition has a name and an optional documentary comment.
Additionally, a definition may be parametrized by zero or more TypeParameters.
Each value definition has an associated type that is represented by a TypeRef. A

TypeRef is essentially a name that references a type definition or a synthetic type. Ad-
ditionally, each TypeRef is annotated with its variance in the context it is used in. For
example, the definition

val fn: Int => String = ???

results in a ValueDef with a type Int => String. In this context, Int is used con-
travariantly and therefore the TypeRef for Int will have an according variance value
of Contravariant.
Furthermore, a TypeRef has zero or more type arguments which are again references

to types. Hence, the above definition of fn is represented as

ValueDef("fn",

TypeRef("=>", Covariant, [

TypeRef("Int", Contravariant, []),

TypeRef("String", Covariant, [])]))
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A definition of a type simply states that there is a type with a certain name, an
optional comment and zero or more type parameters. For example, the definition

class Set[A] { }

is represented as

TypeDef("Set", [

TypeParameter("A", Invariant, "Any", "Nothing")])

As already mentioned, a definition may be parametrized by several type parameters.
A TypeParameter has a parameter name, a variance annotation and an upper and lower
bound. Bounds are identifiers referring to the name of the according type and defaulted
to � or � respectively. For instance, the definition

def flatten[A, C <: Iterable[A]](as: List[C]): List[A]

is represented as

ValueDef("flatten", [

TypeParameter("A", Invariant, "Any", "Nothing"),

TypeParameter("C", Invariant, "Iterable", "Nothing")],

TypeRef("=>", Covariant, [

TypeRef("List", Contravariant, [

TypeRef("C", Contravariant, [])]),

TypeRef("List", Covariant, [

TypeRef("A", Covariant, [])])]))

As we can see, this representation is, in this case, only an approximation of the value’s
actual type. The upper bound of C is only defined as Iterable instead of Iterable[A].
An accurate representation would require full TypeRefs as lower and upper bounds
of type parameters. We mainly decided to use this approximation because it heavily
simplifies type parameter substitutions while yielding accurate results in most cases. A
fully accurate representation of Scala’s types would also require a vast reimplementation
of the Scala type system. Luckily, type signatures like the one of the above flatten

example are relatively rare in the Scala standard library.

4.3.1. Views

With mechanisms like implicit conversions (see subsection 3.3.1), languages may use
additional subtyping like relations between types that are not defined within the type
definition. Because these relations are not represented in TypeDefs, we use the concept
of views to describe subtyping relations detached from type definitions. A View defines
that a value of a certain type can be used when a value of another type is expected.

Figure 4.4 illustrates how we represent views in our data model. A View uses two
TypeRefs to describe source and target types. This allows to represent complex subtype
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Figure 4.4.: Views as an abstraction of subtype relations

relations like Map[Int, A] <: Int => A. Additionally, we use a distance attribute to
represent the distance factor discussed in section 3.2.6.
For example, a class definition like

class BitSet extends Set[Int] {}

results in a view

View(

1,

TypeRef("BitSet", Covariant, []),

TypeRef("Set", Covariant, [

TypeRef("Int", Invariant, [])]))

This view can be read as “A BitSet is viewable as a Set[Int] with a distance of
1”. Hence, if a value of type Set[Int] is expected, one can also use a value of type
BitSet. Note, that views describe possible alternative types at covariant positions.
If we are interested in alternative types used at contravariant positions, e.g. function
return types, we just need to reverse the direction of the view and flip the variance. For
instance, the above view for contravariant positions is

View(

1,

TypeRef("Set", Contravariant, [

TypeRef("Int", Invariant, [])]),

TypeRef("BitSet", Contravariant, []))

This representation enables a mapping of subtype relations independent of the tar-
geted language’s subtyping mechanism. In the case of Scala, it combines both implicit
conversions and inheritance.

4.3.2. Modules

If a project references multiple libraries, a user may want to limit the search scope to
a subset of the indexed libraries. Hence, he uses a filter that specifies which libraries
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Figure 4.5.: Association of definitions and views with modules

should be included in the search. In order to support this feature, we use modules to
represent libraries and other artifacts that define values. Analog to Maven artifacts, a
module has an organization, a name and a revision.

Figure 4.5 shows how definitions and views are associated with modules. Hence,
ValueDefs use an additional reference to the module that defines the according entity.

We distinguish between views that need a certain context to apply and views that are
always active. For example, implicit conversions need to be imported to be applicable.
In this case, the view is associated with the module that provides the realization of the
view, e.g. the method defining the implicit conversion. Views that are always active,
like subtype relations defined with the class definition, are not associated with a specific
module.

4.3.3. Implementation of the Data Model

The actual implementation of the data model in scaps.webapi di↵ers in some details
from the model discussed in this section. Because the design of the retrieval model
required a lot of experimentation with the available data from the Scala compiler, some
data types include additional members that cover Scala specific aspects. Altogether,
we decided to prioritize fast progress over providing a completely language agnostic
implementation.

4.4. Feature Extraction

The scaps.featureExtraction package provides infrastructure to extract API entities
together with type definitions and type views from programming artifacts. An extractor
is a function from a file to a sequence of either entities (value, type and view definitions)
or error messages.

Currently, we use two extractors. ScalaSourceExtractor for extracting entities from
Scala source files and JarExtractor for extracting from jar-files containing Scala source
code. The JarExtractor simply scans jar-archives for files with the su�x .scala and
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then delegates the extraction of the source file to ScalaSourceExtractor. This com-
posite design allows to add further extractors for targeting class-files containing Java
byte code, documentation pages (which can also be packaged in jars) and Java source
files.
Furthermore, the ScalaSourceExtractor requires access to an instance of the Scala

presentation compiler. This is an asynchronous version of the Scala compiler running
only the first few compilation phases up to and including type checking. To successfully
resolve names, the presentation compiler needs to be provisioned with a class path
including all binaries the source file in question is depending on. Thus, an indexing job
should provide information on what has to be extracted (a file system path pointing to
a jar-file) and how it can be extracted (the class path).
Note, that the current state of the source extractor is not yet capable of extracting

all features of every valid Scala source file. For example, inherited doc comments from
base classes are not yet supported. Also, we extract the raw doc comments and do
not process Scaladoc annotations and the markdown syntax. Furthermore, there are
issues with extracting some definitions that use higher-kinded or path-dependent types.
These issues are partly caused by the presentation compiler and partly by incomplete
specifications in the Scala source extractor. Because these extraction errors did not
influence our retrieval results and mainly occur when extracting the Scalaz library, we
decided to currently ignore these errors.

4.5. The Search Engine Facade

scaps.searchEngine.SearchEngine provides a facade that abstracts all operations on
the index, such as indexing extracted entities and querying the index for definitions.
All operations are implemented blocking and either yield an exception or return with a

consistent state of the search engine. Concurrent calls to any of these operations except
search are prohibited.
Listing 4.1 shows how the search engine can be instantiated and fed with entities

extracted from a Scala source jar. The factory method SearchEngine.apply can be used
to obtain a search engine instance that persists indexes on the file system. Alternatively,
SearchEngine.inMemory provides an in-memory instance with volatile indexes.

// build the search engine with default settings
val engine = SearchEngine(Settings.fromApplicationConf).get
// delete all indexed entities
engine.resetIndexes()

val sourceJar = new File("/path/to/source.jar")
val classPath = List("/lib/1.jar", "/lib/2.jar")

// obtain an managed instance of the presentation compiler
CompilerUtils.withCompiler(classPath) { compiler =>
val extractor = new JarExtractor(compiler)
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// start the extraction
val entityStream = extractor(sourceJar)
// collect all entities while ignoring extraction errors
val entities = ExtractionError.ignoreErrors(entityStream)

// index all entities and associate them to an "unknown" default module
engine.indexEntities(Module.Unknown, entities)

}

Listing 4.1: Extracting entities from a source jar and feeding them to the search engine

CompilerUtils.withCompiler provides an instance of the Scala presentation com-
piler. The first parameter list accepts the compiler configurations, like the class path.
The second parameter list expects a callback that uses the managed compiler instance.
After the callback returns, the compiler is disposed and all acquired resources are freed.
JarExtractor.apply returns a lazy list of entities. This allows to continuously build
the index while extracting entities but requires that the compiler instance remains open
until indexEntities returns.

To search definitions in the index, the search engine can be used as shown in Listing 4.2.
search returns either an error if a problem occurred while parsing and analyzing the
query or a result set of the best matching definitions. The number of yielded results can
be adjusted in the configuration file.

val engine = SearchEngine(Settings.fromApplicationConf).get

val query = "max: Int => Int => Int"

engine.search(query).get.fold(
error => {
println("An error occurred while parsing or analyzing the query")

},
results => results.take(10).map(_.signature).foreach(println))

Listing 4.2: Using the search engine for querying the index and printing the top 10 results

Additionally, we use Scala’s Try monad to mark operations that may throw I/O
exceptions. Thus, the complete return type of search is

Try[QueryError \/ Seq[TermEntity]]

This allows to separate between expected errors while processing user input and truly
unexpected failures like corrupted index files.

4.6. Index

All logic interacting with the Lucene API is bundled in scaps.searchEngine.index.
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4.6.1. Lucene

Apache Lucene is a search engine library with focus on high-performance and extensibil-
ity [Apa]. The core ranking model is based on the Vector Space Model but o↵ers various
abstractions to customize query processing, document matching, scoring and many other
aspects of the retrieval model. This section introduces the major concepts used to adapt
Lucene to our needs.

Indexes, Documents and Fields

A Lucene index is a collection of documents. A user can add documents to an index and
remove or retrieve documents from it. A document is again a collection of one or more
fields whereas each field associates a field name to a textual or binary value and some
options on how the value is processed when the document is added to the index.

Some of the more relevant options on a field are:

indexed

To retrieve documents based on the value of a field, the field must be defined
with indexed set to true. Lucene derives a sequence of tokens from an indexed
field by applying a specified analyzer. These tokens are then fed to the index and
associated with the enclosing document.

stored

A field’s value may also be stored in the index. If the field is stored, Lucene persists
a copy of its value such that it can later be retrieved with the document.

Often, it is su�cient to only index the fields of a document and just store a unique
identifier of the according entity.

In contrast to many other database systems, Lucene uses no schema for describing
the structure of the documents in an index. Hence, each document may have a distinct
structure.

Analyzers

Analyzers are used by Lucene to extract tokens from indexed field values and queries.
The input text is first split into a stream of tokens with a tokenizer. For example, the
WhitespaceTokenizer splits the text at whitespace such that the input “Hello, world!”
is transformed to the token stream ["Hello,", "world!"].

The initial token stream is then further transformed by a customizable filter chain.
For example, a filter may strip punctuation marks from tokens, transform all characters
to lower case to ensure case-insensitive search or remove some frequent stop words like
“a”, “an” and “the”. Stemming filters are also available for various natural languages.
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Queries

Besides a built-in query parser, Lucene also allows to programmatically compose queries.
This requires programmers to ensure that keywords are accordingly analyzed but o↵ers
great flexibility on how distinct parts of the query are weighted and what type of queries
are used.

A query basically implements two aspects of retrieval. At one hand, it matches doc-
uments based on field values. And, on the other hand, it calculates a score for the
document that represents its relevancy to the query.

The following list introduces the query types that we use to retrieve entities from the
indexes:

Term Query
A query matching documents containing a certain term in a certain field.

Boolean Query
A query matching documents based on one or more sub-queries. Each sub-query is
associated with an operator that specifies how a match of the sub-query relates to
a match of the boolean query. The must operator causes that the boolean query
only matches if the according sub-query matches. The should operator is used to
specify optional sub-queries that only contribute to the total score of the boolean
query but do not a↵ect the set of matched documents. And finally, the must not
operator causes that the boolean query only matches if the the sub-query does not
match.

Altogether, the name Boolean Query has to be taken with a grain of salt as it
is somewhat misleading. While boolean queries may be used to represent logical
conjunction and disjunction on query terms (e.g. “car AND (travel OR rental)”),
they do not strictly implement boolean logic.

Function Query
A query matching all documents and scores them by applying a custom function.
Typically, the function uses some fields of the documents as input and returns a
single floating point number.

Match All Documents Query
A query matching all documents with equal score. This query can be used to
retrieve all documents from an index.

Custom Score Query
Allows, like function queries, to manually implement the scoring logic but uses a
sub-query to limit the set of matched documents.

Beside the various built-in query types, Lucene also allows to implement custom query
types. This is necessarily if non of the o↵ered query types provide the required matching
logic. But implementing such a query exposes developers to many internal aspects of
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Lucene. This requires a fundamental knowledge of the internal data structures and on
how Lucene’s optimizations can be leveraged.

Similarity

Lucene’s Similarity class and its various sub-classes define how terms are weighted
during retrieval. In simplified terms, Similarity represents the sim(d, q) function used
by retrieval models like the Vector Space Model as discussed in section 3.1. Implementa-
tions access Lucene’s term statistics to e�ciently calculate metrics like term frequency,
IDF and doc length normalization at index or query time.

4.6.2. Indexes

We use a distinct index for each entity type that needs to be persisted. This ensures
that all documents in an index have an identical field structure and simplifies some bulk
operations on all entities of a certain type. Each entity index inherits from the generic
Index[E] class that provides common functionality like managing Lucene’s index readers
and writers. Overall, we use the following indexes to persist and retrieve entities:

Value Index
Persists instances of ValueDef and provides a search method that retrieves API
definitions based on a processed user query.

Type Index
Persists instances of TypeDef. Type definitions can either be retrieved by their full-
qualified name or a su�x thereof. Hence, the type definition of java.lang.String
can be retrieved by searching for “java.lang.String”, “lang.String” or “String”.

View Index
Persists type views and provides an e�cient method for retrieving sub and super
types. This requires that ViewIndex knows the according typing rules which are
currently hard-coded into the implementation.

Module Index
Persists descriptions of all indexed modules.

Representative for the basic principles we use to store entities as documents in the
indexes, Table 4.1 shows the document schema used in the value index.
In general, the entity represented by the document is serialized as JSON and stored in

the entity field. When retrieving documents, the original entity can easily be restored
by deserializing the JSON string to an instance of the according type. Other fields
like name and doc are included in the document to support queries on the according
values. These fields need not to be stored but are analyzed and indexed. Additionally,
some data like fingerprintLength has to be accessible during querying to calculate
document scores but are not used for document matching. These values are stored but
not indexed.
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Table 4.1.: Document schema used in the value index

Field Description Type Stored Indexed

name Qualified name of the value Text ✓
doc Associated documentation Text ✓
fingerprint Individual terms of the fingerprint Text ✓ ✓
moduleId Id of the defining module Text ✓
fingerprintLength Number of terms in the fingerprint Numeric ✓
entity Serialized ValueDef entity Text ✓

4.6.3. Analyzing Names and Documentation

The conventions used for naming types and values in source code and documentation
make some specific demands to the token analysis process. Identifiers should be split
into the words they are composed of. For instance, the identifier searchEngine.index.
ValueIndex is composed of “search”, “engine”, “index”, “value” and “index”. Fur-
thermore, symbolic method names like +, == or <*> should also be retained during
tokenization.

This led to the following rules to transform names and documentation of ValueDefs
to a token stream:

1. Tokens are delimited by whitespace and ’.’ characters.

2. A token is split at changes from lower case to upper case. E.g. “ValueIndex”
becomes “Value” and “Index”.

3. A token is split at changes from alphabetical characters to non-alphabetical char-
acters and vice versa. E.g. “int2string” becomes “int”, “2” and “string”.

4. All alphabetic characters are transformed to the according lower case character.

This behavior is implemented by chaining Lucene’s built-in WordDelimiterFilter

and LowerCaseFilter to a customized CharTokenizer that additionally uses the ’.’

character as a delimiter.

4.6.4. Retrieving Value Definitions

The find method of the value index accepts a preprocessed query containing a string of
textual keywords and a type query expression as introduced in subsection 3.2.5. Further-
more, the search can be filtered by a set of module ids such that only values defined in
these modules are returned. These input parameters are transformed to a single Lucene
query which is run against the value index. The retrieved documents are then converted
to a ValueDef by deserializing the stored entity value and returned to the caller.

The core of the generated Lucene query is an instance of the custom query type
TypeFingerprintQuery. This query reads the stored fingerprint terms from documents
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Figure 4.6.: Expression tree for the query List[T] => Option[T]; each leaf node’s fin-
gerprint term is annotated with the according weight (superscript) and type
frequency (subscript)

and evaluates the query expression by applying the fingerprint. The resulting score
denotes how well the document’s fingerprint matches the type of the user query.

Because evaluating the query expression is a rather expensive operation, the number
of scored documents by the type fingerprint query should be limited. This is achieved by
using a sub query for matching documents that are likely to result in a high fingerprint
score or whose name or doc field contain a keyword from the user query. Only documents
matched by this sub query are scored by the type fingerprint query.

The heuristic used to filter documents that are likely to achieve a good fingerprint
score is called fingerprint frequency cuto↵. The idea is to only match documents that
contain a fingerprint term with a low type frequency that has a high impact on the total
score. Given the example expression tree in Figure 4.6, the fingerprint term -Any has
a relative high type frequency. A query including -Any potentially matches 70% of the
value definitions in the index and its specificity is therefore rather low. Furthermore,
the highest possible score contributed by -Any is 0.3 which is relatively low compared
to other nodes like -List or +Option. As a consequence, documents containing -List

are more likely to achieve a good score than documents containing -Any but none of the
other terms.

To find the fingerprint terms in the query expression that have a low type frequency
but a high weight, all fingerprint terms of the query expression are ordered by descending
weight. The longest prefix of this list with an accumulated type frequency below a certain
threshold is then used to build the matcher query. The threshold is a configurable
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parameter called fingerprintFrequencyCutoff.
Applying this heuristic to the example expression tree in Figure 4.6, we get the fol-

lowing list of ordered fingerprint terms:

−List1
0.02

,+Option1
0.03

,−Iterable0.9
0.1

,−Any0.5
0.7

,+Nothing0.2
1

Using a fingerprint frequency cuto↵ of 0.2, the resulting fingerprint terms are then
-List, +Option and -Iterable as the accumulated type frequency is 0.15 and including
-Any would exceed the threshold.

This approach ensures that only a small fraction of the indexed value definitions needs
to be evaluated against the type query expression. With a cuto↵ of 0.2, at most 20% of
the index has to be evaluated.

4.6.5. Fingerprint Evaluation Algorithm

As mentioned in subsection 3.2.7, evaluating a type query expression against a type
fingerprint is a relatively costly operation. In this section, we explain the heuristic used
in our implementation and why it is a good approximation to an optimal algorithm.

The core of the algorithm is a scoreTerm(e, t) function that returns the best possible
score when evaluating a query expression e against a single fingerprint term t. This is
achieved by locating the matching leaf with the highest associated score. Additionally,
scoreTerm returns a copy of the expression tree e pruned accordingly to the following
rules:

• A leaf node associated with the term t
l

is removed if t == t
l

.

• An inner node is removed when the number of childrens is 0.

• If t matches a child node c
i

of a max node �(c
1

, ..., c
n

) with the best possible score,
all child nodes except c

i

are removed.

For example, applying scoreTerm with the expression shown in Figure 4.6 and the
term -Iterable yields the score 0.9 and modifies the tree as illustrated in Figure 4.7.
Because -Iterable is a descendant of the �* node, the third rule applies and all other
child nodes including their descendants are removed.

A naive algorithm scoreFingerprint(e, f) to evaluate a complete fingerprint f

would be to sequentially apply the fingerprint terms to scoreTerm and accumulating the
resulting scores. Unfortunately, this approach does usually not yield the best possible
score and is dependent on the order in which the individual terms are processed.

A better approach is to apply the fingerprint terms ordered by their maximal achiev-
able score. Hence, a term that may contribute more to the total score is applied before
terms with less potential. To get the potential score of each term, we first apply each term
tn to scoreTerm(e, tn) with the original expression tree. This potential score then de-
termines the ordering of the fingerprint terms in f before applying scoreFingerprint(e,
f).
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Figure 4.7.: Expression tree as shown in Figure 4.6 after applying -Iterable; pruned
nodes are shown grayed out and with dashed edges to parent nodes

This heuristic proved to be su�cient to evaluate expressions as produced by our query
analyzer. The reason that this approach yields the optimal result in most cases is that
the query analyzer does not create arbitrary expression trees. Instead, the weights
associated with each leaf are generated with a certain pattern:

Given an expression �(⊕(c
1,1

, ..., c
1,m

), ...,⊕(c
n,1

, ..., c
n,m

), d), for each sub
expression ⊕(c

k,1

, ..., c
k,m

) there is a node c
k,l

with a higher weight than the
weight associated with d.

As long as this property holds for every sub tree of the processed expression, the
algorithm will prune d if there is an alternative ⊕(c

k,1

, ..., c
k,m

) that achieves a total
higher score than d. This property can also be observed in the example tree in Figure 4.6.
The alternative −Any0.5

0.7

will be pruned if the processed fingerprint contains -List or
-Iterable. If the property does not hold and −Any0.5

0.7

has a weight of 0.95, a fingerprint
-List, -Any, +Nothing would be processed with the order -Any, -List, +Nothing

which would yield a non-optimal score of 0.95 + 0.2 = 1.15.
4.7. Query Analysis

The transformation from a user’s query to a complete type query expression that can be
processed by the fingerprint evaluation algorithm requires several intermediate process-
ing steps. A complete overview on these steps is given in Figure 4.8 and the implementa-
tion, including the intermediate data structures, can be found in scaps.searchEngine.
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queries. Note, that this section only describes the processing of the type part of the
query. Textual keywords are passed without any transformation to Lucene’s tokenizer.

The query analysis process starts with parsing the query string. The QueryParser

separates textual keywords and the type signature. The type signature is additionally
transformed to a type tree where each node has a type name and zero or more type
arguments. Syntactic shortcuts for function and tuple types, like A => B and (A, B),
are also parsed accordingly.

The parser implementation should give users flexibility on how a query is formulated
but should also be able to report syntax errors in query types. Hence, a query like read
file utf8 or >:> should be recognized as a sequence of keywords, Int => String on
the other hand is a type query and try parse: String => Int contains both keywords
and a type. Furthermore, queries with invalid type name like List[A or (A => B should
result in a parsing error. The query max can represent both a type or a keyword. In this
case, we first treat it as a type and try to process it accordingly. If the query analysis
yields a resolution error, the query is processed again as a keyword query.

The raw type query yielded by the parser is then passed to the QueryAnalyzer. The
first processing step is to resolve type names with the type definitions provided by the
TypeIndex. Incomplete type identifiers like Int are resolved to their full-qualified name
(scala.Int). If the name is ambiguous or there is no according type definition, an
error is returned. To reduce ambiguity errors, we prioritize type definitions in the root
namespace scala of the Scala standard library. Furthermore, the resolution step checks
if the defined number of type parameters matches the number of type arguments in
the query. Hence, Map[Int] results in an error because Map is defined with two type
parameters. If the query omits the type argument list, wildcard types are inserted
accordingly. For example, Map will be interpreted as Map[ , ].

The next step is to transform the resolved query to a valid type reference (an instance
of TypeRef). This requires that each type in the query is also associated with its vari-
ance at the according position. For example, Map[Int, String] => Int will become
+Function1[-Map[/Int, -String], +String] if Map is invariant over the first type
parameter and covariant over the second type parameter.

The type reference is then normalized with the same function as the type of value
definitions are normalized before added to the index. For example, function types are
transformed to their curried representation: (A, B) => C becomes A => B => C.

This normalized type is then expanded to a unweighted query expression. For each
partial type, the type hierarchy is searched for sub or super types according to its variance
(see subsection 3.2.5). The alternative types are provided by the ViewIndex. During
the expansions, the various weighting factors like depth, distance and type frequencies
are retained in the unweighted query expression.

In order to reduce the complexity of the expression and decrease the runtime of the
evaluation algorithm, the expression tree is minimized in the next step. The minification
function performs the two following optimizations:

• Elimination of unnecessary nodes. Sub expressions like ⊕(�(x)) are rewritten to
x.
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Figure 4.8.: Overview on the query analysis process from a textual user query to a fully
resolved and expanded query expression; processing steps are illustrated
with rounded corners; rectangular shapes represent input and output data;
processing steps that may also return an error are annotated with *
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• Out-factorization of common sub expressions. Because query expressions are dis-
tributive over ⊕, expressions like �(⊕(a, c),⊕(b, c)) can be rewritten to ⊕(�(a, b), c).

The final step is to calculate the weight associated with each leaf node in the expression
tree. As discussed in section 3.2.6, this depends on the parametrized weights of each
individual factor.

4.8. Web Service

The Scaps web service uses the core library to manage an instance of the search engine.
The search engine is exposed over an HTTP API and by a simple user interface that
supports user queries to the search engine. The web service uses the Spray toolkit [Typb]
to integrate the search engine in an HTTP server. Spray is a collection of lightweight li-
braries including an HTTP server implementation and a domain specific language (DSL)
for request routing.

4.8.1. HTTP API

The HTTP API provided by the web service exposes the Scaps User and Control APIs
over HTTP. User and Control API are Scala traits defined in the scaps.webapi package.

The user API defines a search method accepting an unparsed query string and a
set of module filters and an assessPositively method that accepts a positive user
feedback about a specific search result. The control API defines a single index method
that accepts several index jobs with modules to be indexed. Invoking index will start
the indexing process. After the process completes, the index used by the search engine
will only consists of the modules provided in the arguments to index. Hence, index re-
places previously indexed modules. Additionally, both APIs define a getStatus method
that returns information about what modules are indexed and what jobs are currently
processed.

The HTTP API is implemented by using the Autowire [Haoa] library for Scala. Au-
towire provides macros that enables remote procedure calls (RPC) between Scala systems
without depending on runtime reflection. Furthermore, while Autowire is agnostic to
the underlying transport protocol, it does not abstract away the fact that calls to the
API are made over an unreliable network connection with potentially high latency. The
reason we decided to use an RPC based API instead of a RESTful web service is that
Autowire requires no boilerplate code to map HTTP requests to method calls. This
ensures that changes to the API and the underlying data model can be quickly applied.

4.8.2. Web Client

The web client provides a minimalistic user interface for querying the index. As shown
in Figure 4.9, the UI is composed of a text field for entering a query, a module filter
for restricting the search to certain modules and the result set. Each result consists of
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the definitions signature, its defining module, its fully qualified identifier and a link that
allows user to confirm that this result is relevant to their information need.

Figure 4.9.: Screenshot of the Scaps web client

The web client is written using ScalaTags [Haob] and Scala.js [Doe]. ScalaTags is
an internal Scala DSL for defining HTML templates. Instead of using a dedicated
templating DSL with additional syntax rules, ScalaTags allows to use the familiar Scala
language constructs. Scala.js on the other hand, is a plug-in for the Scala compiler
that adds another backend emitting JavaScript instead of Java byte code. By using
Scala.js, the code executed in the browser can be written almost exclusively in Scala.
Also many third-party Scala libraries are available for Scala.js, including Autowire and
ScalaTags. Compared to other JavaScript cross compilation projects, Scala.js is no
framework abstracting over the browser’s DOM API and allows to directly call native
JavaScript functions.

The following reasons lead to the decision to use a Scala-only architecture: First,
we wanted to gain some personal experience with these tools as they promise some
interesting approaches to web development. And second, it seemed that this architecture
is highly suitable for fast development. Because all layers of the software are written in
Scala, the IDE is capable to type check all parts of the project and automated refactorings
are also applied on the client code. Furthermore, it reduced the required amount of code,
because domain logic can easily be shared between client and server.

In retrospect, ScalaTags and Scala.js turned out to be good choices for this project.
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Especially the functional nature of ScalaTags helped to simplify the complex transfor-
mations from result sets to HTML nodes. Because the final version of the prototype
included less features requiring dynamic code on the client than initially anticipated,
Scala.js lead to a slightly over-engineered solution that does not yet leverage the full po-
tential of the cross-compilation step. Nevertheless, using Scala.js involved surprisingly
few complications, despite its relatively early development state.

4.8.3. Concurrency

To achieve a good response time when multiple users simultaneously access the Scaps
service and to support queries while the index is being rebuilt, a good approach to
concurrency is inevitable. As Spray already makes use of the Akka actor library [Typa],
we decided to also leverage the actor model [AH85] to handle concurrent calls to the
search engine.

The resulting actor system is fairly simple and consists of the following components:

Searcher
An actor processing one search query.

Index Worker
An actor processing an index job.

Director
An actor orchestrating searchers and index workers and manages instances of the
search engine facade (see section 4.5).

Scaps API Implementation
Converts calls to the Control and User APIs to messages that are passed to the
search engine actor.

The core of the actor system is the director that receives messages from the API
implementation. When it receives a Search message, it creates a new searcher with
an instance of SearchEngine and relays the message to the new actor. The searcher
processes the query by using the blocking find method on the instance of the search
engine. As soon find returns the search result is sent to the API implementation which
returns it to the caller of the API. Finally, the searcher is terminated by sending a Kill

message to itself. This message flow is also illustrated in Figure 4.10.
A similar message flow is implemented for Index messages that consists of modules

to be indexed: In this case, the director creates a new index worker with a new instance
of SearchEngine and relays the message to this worker. The director confirms that the
index job has been started by replying to the API implementation with an according
message. Additionally, the director transits to the Indexing state. In this state, all
further Index messages are rejected. When the index worker successfully completed
the index job, it sends an Indexed message to the director including a reference to the
SearchEngine on which the index has been built. The director can now transit back to
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Figure 4.10.: Message flow after search has been invoked on the Scaps API

the Ready state and dispose the old search engine. From this point in time, all search
queries are answered with the updated search engine.

Figure 4.11.: States of the director actor

Figure 4.11 illustrates the two possible states of the director. As shown, search queries
can be answered in both states. In the Ready state, there exists only one instance of
SearchEngine that is used to answer all queries. As mentioned in section 4.5, concurrent
reads on the indexes are not an issue. In the Indexing state, the existing search engine
is used to answer queries and the index is being built with a new instance.

4.9. SBT Plug-in

The Scaps SBT plug-in integrates a client to the Scaps Control API into the Scala Build
Tool (SBT). This allows the use of SBT to resolve and fetch dependencies of libraries
that should be indexed. Furthermore, SBT provides the correct class path required by
the presentation compiler to extract entities from the source files.

The SBT plug-in provides the following tasks that can be executed in the SBT console:
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scaps
Queries the Scaps service with <query> and prints the top three matching type
signatures.

scapsStatus
Requests & Displays the current status of the service.

scapsModules
Yields the modules that will be indexed based on the libraryDependencies de-
fined in the build settings.

scapsIndex
Requests the service to index the modules yielded by scapsModules.

Additionally, each task uses one of the following settings that should be defined in the
build settings:

scapsHost
Host name of the Scaps User API, defaults to localhost:8080.

scapsControlHost
Host name of the Scaps Control API, defaults to localhost:8081.

Because the plug-in includes the local file system paths in the index jobs sent to the
Scaps service, scapsIndex has to be executed on the same machine that also hosts the
service.

4.10. Architectural Insights

As already mentioned, we mainly focused on fast development and easy experimentation
with the Scala presentation compiler and our retrieval model while implementing the
Scaps service. This resulted in some pragmatic design decisions that may complicate
future extensions.

First, integrating feature extraction into the core library and delegating the extraction
process to the Scaps web service is to some extension a violation of the separation of
concerns principle. An improved design would assign the extraction process to the clients
of the Control API. For example, the SBT plug-in extracts all available definitions and
sends the list of value, type and view definitions to the Scaps service with the index
request. Because the SBT plug-in knows all compiler settings like class-path, enabled
compiler plug-ins and flags, it should be responsible to interpret the source files. This
design would also simplify incremental indexing of modified source files. This is an
important requirement for integrating Scaps into IDEs. Another advantage would be
that the SBT plug-in no longer needs to be executed on the server that hosts the web
service. API entities could simply be transfered over the network.
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The reason we did not use this design is mainly the fact that SBT is currently being
built against Scala 2.10. This complicates the integration of the Scala 2.11 presentation
compiler into the plug-in to some extent.
And second, the implementation of the retrieval model is not completely isolated and

contains Scala specific logic. Though, a more language agnostic implementation would
simplify migrations to future versions of Scala and to other programming languages. A
clean separation of the retrieval model should theoretically be possible. The core model
can be reused between programming languages. The language specific aspects that needs
to be factored out are:

1. How can values, types and views be extracted from source files?

2. How can types be normalized?

3. What is the syntax of the queries?

4. How should search results be presented?

If the first aspect would be delegated to the Control API clients as mentioned above,
it would already be separated. Because type normalization is also used during the query
generation, the language specific normalization rules must also be available by the core
library. Furthermore, language specific query parsers and presentation logic may be
convenient but should not require major changes to the architecture.

4.11. Evaluation Tools

Finally, scaps.evaluation provides the tools used to evaluate the Scaps core library.
The package implements two main classes Benchmark and Evaluation.
The former calculates the evaluation scores for a fixed configuration. This class is

mainly used to perform regression tests on the continuous integration (CI) server. For
all commits, Benchmark is automatically executed and the achieved scores are reported
to the CI output. This allows to quickly detect changes that accidentally damage the
e↵ectiveness of the search engine. Also, changes that are supposed to improve the
evaluation scores can easily be verified. This setup proved to be highly helpful. It
allowed, together with the unit test suit, to quickly apply changes and precisely track
the consequences (see section E.3).
The second main class Evaluation implements the evaluation of our retrieval model

and the comparison between various instantiations of the system. This class has also
been used to search for a good parametrization of the search engine by accordingly
modify the definitions of the various test runs. The evaluation of the retrieval model
with the compared systems and the collected measurements is discussed in detail in the
next chapter.
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In chapter 3, we presented various techniques, like depth and distance boosts, that should
improve the performance of our retrieval model. Unfortunately, there is no formal proof
that supports the e↵ectiveness of these techniques or the e↵ectiveness of the basic ideas
of the fingerprint evaluation model. Therefore, we need empirical data to decide which
techniques are beneficial and how to configure the parameters of the model.

The evaluation of our retrieval model should mainly give answers to the following
questions:

• How e↵ective is the API retrieval model to answer information needs?

• Can the system be improved with the various modifications proposed in section 3.2?

• What is the optimal parameter configuration?

This chapter introduces the measurements and test setup provided to answer these
questions and presents and discusses our results.

5.1. Measures of E↵ectiveness

Because we address API retrieval like an information retrieval problem, we can use
the same measurements as traditionally used in IR to evaluate the e↵ectiveness of our
solution.

Two simple measures of the e↵ectiveness of an IR system with unranked result sets
are precision and recall. In our case of a ranked result set, we have to use some more
sophisticated measures that are extensions of these two basic notions of e↵ectiveness.

The precision of an IR system for a certain query is the ratio between the number of
retrieved documents that are relevant to the query (true positives) and the total number
of retrieved documents:

Precision = �relevant retrieved��retrieved�
Additionally, recall is the fraction of relevant documents that have been retrieved with

a query:

Recall = �relevant retrieved��relevant�
Hence, if we identified a total of 5 documents that are relevant to a query and the

IR system yielded 4 of those documents, the resulting recall is 4�5 = 0.8. This implies
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that a system returning all documents in the collection will always achieve a recall of 1.
Hence, a high recall alone will not su�ce to state that an IR system is e↵ective.
Retrieval systems are usually ranked. Hence, a search engine yields a list of results

ordered by the assumed relevancy to the user’s query. The result set contains a vast
number of documents that are only browsed by users until no more relevant results show
up or the information need has been answered. If we apply the precision and recall
measures to such a system, recall will usually tend towards 1 and precision towards 0.

5.1.1. Mean Average Precision (MAP)

A useful tool to reason about the e↵ectiveness of a ranked retrieval system is a precision/
recall graph [MRS08, p. 145]. This graph plots the precision and recall values for each
rank of the result set. Hence, the n-th data point is precision and recall of the n first
results yielded for a certain query.
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Figure 5.1.: Precision/recall graph for the query Ordering[Char]; The first data point
marks the precision/recall at rank 0

Figure 5.1 shows a typical precision/recall curve of our retrieval system for the query
Ordering[Char]. This query should yield available implementations of the Ordering

type class for Char. We identified a total of 5 relevant entities in the Scala standard
library for this query and our implementation yielded these relevant results at the ranks
1, 2, 5, 6 and 9.
A good indicator for the accuracy of the query results is the area under the precision/

recall curve. An ideal system would draw a precision/recall curve going straight from(0,1) to (1,1) with an area of 1. The worst possible system, that does not retrieve the
relevant results at all, would draw a precision/recall curve with an area of 0, all points
would be clustered at (0,0). This indicator is also referred to as average precision and
is defined as
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AP = � 1

0

p(r)dr
Hence, the integral of the precision p at the recall level r from 0 to 1. A more practical,

but equivalent, interpretation is

AP = ∑n

k=1 P (k)rel(k)�relevant�
whereas n is the number of retrieved documents, P (k) is the precision at rank k and
rel(k) is 1 if the k-th result is relevant or 0 otherwise [TS06].

The mean average precision (MAP) refers to the arithmetic mean of the average
precision of all queries Q in a test collection:

MAP = ∑q∈QAP
q�Q�

Altogether, MAP provides a single metric across the complete result set that incorpo-
rates both recall and precision. Thus, optimizing the system for either a high recall or
precision value will not su�ce to achieve a high MAP value but a high MAP indicates
a relatively high precision across all recall levels.

To evaluate our API retrieval system, we use the MAP value calculated for the top
100 results for each query. Note, that including only the 100 best results would not
be considered good practice for evaluating traditional IR systems but is su�cient in
our case. API retrieval operates typically on smaller document collections (hundreds of
thousands instead of millions) and the number of relevant results for an information need
is also smaller. Our test queries have been associated with between 1 and 6 documents
that we identified as relevant.

5.1.2. Recall at 10

While MAP is suitable for optimizing over the whole result set, the metric does not
particularly well represent a user’s perception of a good search engine. For instance, if
a system answers a query with two relevant results by ranking one result at rank 1 and
the other at rank 100, the resulting MAP will be higher than for a system that yields
the relevant results at ranks 4 and 5. Assuming that the user will be interested in both
results, the later system is probably considered to be more useful independent of the
higher MAP of the former.

Furthermore, MAP is not an intuitive concept. Stating that a system has a MAP
value of 0.7 does not provide much information except that it probably performs better
than a system with a MAP of 0.65.

This is why we collect with recall at 10 (R
10

) an additional metric that is more user-
centric and easier to communicate. R

10

is simply the fraction of relevant documents in
the top 10 results:
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R
10

= �relevant retrieved�
min{�relevant�,10}

Hence, R
10

= 0.75 indicates that three fourth of the relevant results show up in the
top 10 retrieved results, or in our case, on the first result page. Analogous to MAP, we
use the arithmetic mean of R

10

over all queries to get a single score for the performance
of the retrieval system.

5.2. Test Collections

For the evaluation of our retrieval model, we extract API entities from the following
open source Scala libraries:

• Scala Standard Library

• Scalaz

• Scala Refactoring

The Scala standard library is an obvious choice as it is well-known by all Scala de-
velopers and provides a big corpus of various functionality. Additionally, Q&A web
platforms provide many questions concerning the standard library that have been used
to derive realistic information needs.
Scalaz is a popular Scala library designed for a purer form of functional programming

with strong abstractions in the style of Haskell’s standard library. Scalaz makes heavy
use of advanced Scala language features like higher-kinded types and the type class
pattern. Thus, some of the functionality is not yet discoverable by the current state of
our implementation (see subsection 3.3.3). Nevertheless, we decided to include Scalaz
into the test collection. The reason was to ensure that the additional entities do not
interfere with the information needs derived from the other libraries. Hence, we mainly
use Scalaz to add “noise” to the retrieval process and to lift the numbers of indexed
entities to over 100’000. Furthermore, Scalaz will definitively become an important part
of the evaluation of future versions of our implementation with better support for implicit
parameters.
The last library in our test collection is Scala Refactoring [Sto10]. This project pro-

vides infrastructure for and implementations of automated refactorings for Scala and is
used in Scala IDE. We include Scala Refactoring as an example of a domain specific
project. Hence, most functionality targets the analysis and transformations of abstract
syntax tress. Furthermore, the library defines some extensions to the classes of the
standard library. Such extensions are of particular interest for API retrieval as they
implement general functionality not easily discoverable without a deep knowledge about
the providing library.
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5.3. Information Needs

We identified a total of 52 information needs for our test collections and formulated
queries accordingly that have been associated with identifiers relevant to the query.
Thus, a result is only relevant if it answers the information need and not if it just has
the identical type signature as the query. The relevance judgment is binary such that an
entity is either relevant or not. We do not use a relevance scale that allows judgments
like “A is highly relevant and B is somewhat relevant to Q”.

We ensured that the information needs cover various types of queries such that they
represent di↵erent usage patterns. We use the following dimensions to informally classify
usage patterns:

Navigational vs. Informational Queries
According to [Bro02], the purpose of a navigational query is to find a particular
document that the user has in mind. The user has a relative clear notion of the
document he is looking for, because he used it before or he assumes that such a
document must exists. For example, sorting an array is a functionality provided
by almost any programming language’s standard library. Thus, a user will assume
that there should be an according function and uses a query like sort: Array

=> Unit. The information he is looking for is mainly the identifier of the sort

function.

On the other hand, the purpose of an informational query is to discover new in-
formation. A user may have a value of type Person and supposes that a person
should have some relation to zero or more employees. Though, he does not know
how employees are represented in the system or how this relation is provided. He
uses a query of the form employees: Person => List. In this case, the informa-
tion of concern includes more than just an identifier. The user is also interested in
the type representing an employee and the details of the relation (e.g., only current
employees or a history of employees).

Generic vs. Concrete Query Types
A user may not always be able to formulate his information need with the same
genericity as provided by the indexed library. Usually, functionality from the stan-
dard library tends to be defined in a relatively generic way. But other functionality
defined in more domain specific libraries may be defined less generic than possi-
ble. For example, a sum function on containers may have a concrete signature like
List[Int] => Int or a more generic one like Traversable[A] => Monoid[A] =>
A which makes use of the Monoid type class. The same applies to queries formulated
by search engine users. Because we assume that library designer tend to spend
more e↵ort to figure out the most generic implementation than search engine users,
we want to also support queries with more concrete types as the according relevant
entities.

Textual vs. Type-directed Queries
The same information need may be formulated by only using textual keywords,
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Baseline 50 - - [0,0.5] - - - 0.1 [0,0.5] 0.8
Baseline+All 500 - on [0,0.5] - [0,2] [0,2] 0.1 0.05 0.8
FEM 50 on - [0,0.5] - - - 0.1 0.05 0.8
FEM+Di 50 on - [0,0.5] [0,2] - - 0.1 0.05 0.8
FEM+De 50 on - [0,0.5] - [0,2] - 0.1 0.05 0.8
FEM+TF 50 on - [0,0.5] - - [0,2] 0.1 0.05 0.8
FEM+Fr 50 on on [0,0.5] - - - 0.1 0.05 0.8
FEM-Di 500 on on [0,0.5] - [0,2] [0,2] 0.1 0.05 0.8
FEM-De 500 on on [0,0.5] [0,2] - [0,2] 0.1 0.05 0.8
FEM-TF 500 on on [0,0.5] [0,2] [0,2] - 0.1 0.05 0.8
FEM-Fr 500 on - [0,0.5] [0,2] [0,2] [0,2] 0.1 0.05 0.8
FEM+All 500 on on [0,0.5] [0,2] [0,2] [0,2] 0.1 0.05 0.8

Table 5.1.: Evaluated instantiations of the prototype with the according configurations;
numbers in brackets denote the range in which the according parameters are
generated

types or a combination of both.

Unfortunately, we have currently no data on the actual usage patterns of real user
interactions with the search engine. This is why we decided to mainly focus on queries
more interesting from an API retrieval point of view. Thus, the test queries are biased
towards type-directed queries such that we can evaluate the fingerprint evaluation model.
The complete test collection is provided in Appendix D.

5.4. Test Setup

To evaluate our retrieval model we instantiate the Scaps core library with various con-
figurations that enable specific features. For each of these instantiations we search for a
good parametrization by randomly generating parameter configurations for the enabled
features and calculating the according MAP and R

10

values by applying the system
to the test collection. The configuration that achieves the highest MAP value is then
compared to the other instantiations.
Table 5.1 lists the exact setup of the individual instantiations. Each instantiation uses

some fixed parameters and some parameters that are randomly chosen with a uniform
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distribution from a given range. “No. Configurations” indicates how many runs with
randomly generated configurations have been evaluated for the according instantiation.

The first instantiation “Baseline” is used to compare our solution to simpler tools
for searching functionality in APIs. This instantiation disables type views such that
subtype relations are no longer included during the retrieval process. Such a system
roughly corresponds to Eclipse JDT’s “Java Search” feature that allows type patterns
in queries or to a sophisticated regular expression applied on ScalaDocs.

A more sophisticated textual solution may additionally use some heuristics to weight
terms based on its frequency in the document collection or its depth in the query. This
is reflected in the “Baseline+All” instantiation that additionally enables “Depth Boost”,
“Type Frequencies” and “Fractions”. Enabling “Distance Boost” is not reasonable in
this setup because it does not incorporate type views and the distance will therefore
always be zero.

The next instantiation “FEM” is the raw fingerprint evaluation model without any of
the extensions discussed in section 3.2 enabled but including type views like subtyping
and implicit conversions.

The instantiations “FEM+Di” to “FEM+Fr” each enable an extension separately to
analyze the improvement of the distinct features. Accordingly, “FEM-Di” to “FEM-Fr”
each disable the extension in question. And finally, “FEM+All” instantiates FEM with
all extensions enabled.

The parameter ranges have been chosen accordingly to our experience and to achieve
feasible results without generating too many configurations with unreasonable parametriza-
tion. For example, we observed a length normalization weight of less than 0.3 generally
results in a better score. With increasing values for this weight the performance of
the system usually dropped rapidly. Hence, limit “Length norm” to values below 0.5
seemed reasonable. For the other parameters, we observed that the absolute value is of
less influence than the rate between them. Thus, the lower limit of zero and a uniform
distribution of the random number generator is more crucial than the upper limit of 2.

“Name Boost” is fixed for all instantiations to 0.1. Thus, we search good a parametriza-
tion relative to a given “Name Boost”. Additionally, “Doc Boost” is fixed to 0.05 for all
instantiations expect for the “Baseline”. This is based on the observation that a ratio
between “Name Boost” and “Doc Boost” of 0.5 gives su�ciently good results and that
this ratio is usually of little impact to the overall score. Furthermore, the test collection
mainly focuses on type queries because the support for keywords based searches is not
yet as well developed.

Finally, the “Frequency Cuto↵” parameter (see subsection 4.6.4) is also fixed to 0.8 for
all instantiations. This parameter is only used to limit the number of matched documents
and therefore improve the runtime of a query. The value has been chosen su�ciently
high to not a↵ect the quality of the result sets and needs to be further adjusted when
instantiating the search engine for a productive environment.

Altogether, this test setup allows us to answer the questions initially stated in this
chapter. First, we can verify the e↵ectiveness of our approach compared to some existing
approaches by comparing “Baseline” and “Baseline+All” with the remaining instantia-

85



CHAPTER 5. EVALUATION AND PARAMETRIZATION

V
ie
w
s

F
ra
ct
io
n
s

L
en

gt
h
N
or
m

D
is
ta
n
ce

B
oo

st

D
ep

th
B
oo

st

T
yp

e
F
re
qu

en
cy

N
am

e
B
oo

st

D
oc

B
oo

st

F
re
qu

en
cy

C
u
to
↵

M
A
P

R
1
0

Baseline - - 0.10 - - - 0.1 0.02 0.8 0.57 0.69
Baseline+All - on 0.01 - 1.58 1.47 0.1 0.05 0.8 0.62 0.74
FEM on - 0.20 - - - 0.1 0.05 0.8 0.36 0.48
FEM+Di on - 0.14 1.27 - - 0.1 0.05 0.8 0.59 0.72
FEM+De on - 0.20 - 0.26 - 0.1 0.05 0.8 0.31 0.41
FEM+TF on - 0.16 - - 0.26 0.1 0.05 0.8 0.51 0.65
FEM+Fr on on 0.20 - - - 0.1 0.05 0.8 0.27 0.38
FEM-Di on on 0.06 - 0.14 0.80 0.1 0.05 0.8 0.61 0.81
FEM-De on on 0.13 0.31 - 0.83 0.1 0.05 0.8 0.70 0.87
FEM-TF on on 0.25 1.08 0.10 - 0.1 0.05 0.8 0.55 0.66
FEM-Fr on - 0.15 1.35 1.38 1.95 0.1 0.05 0.8 0.68 0.84
FEM+All on on 0.18 0.39 0.09 1.28 0.1 0.05 0.8 0.70 0.85

Table 5.2.: Evaluation results with the configuration of the best instantiations (by MAP);
all parameters and results have been rounded to two decimal places

tions. Second, we get some insight of the e↵ectiveness of the various extensions. And
finally, as a side e↵ect of the evaluation process, we get a good parametrization that can
be used in a productive environment.

5.5. Results

Table 5.2 shows the detailed evaluation results with the configurations that achieved the
highest MAP value per instantiation. The “Baseline” and “Baseline+All” instantiations
achieved a MAP of 0.57 and 0.62 respectively. “FEM+All” resulted in the highest score
with 0.7049 closely followed by “FEM-De” with a MAP of 0.6986. A more clearly laid-
out comparison between the baseline instantiations and the FEM instantiations with
distinct features disabled is given in Figure 5.2.

Additionally, Table 5.3 lists the per query scores of 20 randomly chosen queries for
the “FEM+All” and “Baseline+All” instantiations. This comparison shows that both
instantiations can answer more than half of the queries with the best possible average
precision (AP) of 1. Thus, the n relevant entities for a query are yielded at the ranks
1 to n. Furthermore, some queries have been answered with a higher precision by the
baseline instantiation.
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FEM+All Baseline+All
AP R

10

AP R
10

sort: Array[Float] => 0.87 1 0.67 1
shuffle: List[A] => List[A] 1 1 1 1
unit unapply: Trees#Tree => Option 1 1 1 1
distance: (Trees#Tree, Position) => 1 1 1 1
step: (Range, Int) => Range 1 1 1 1
Ordering[Char] 0.82 1 0.5 0.5
List[A] => (List[A], List[A]) 0.63 1 0.81 1
(List[A], String) => String 1 1 1 1
String => Double 1 1 0 0
unapply: Trees#Block => Option 1 1 1 1
sort: (Array[A], Ordering[A]) => 1 1 1 1
List[A] => (A => Boolean) => List[A] 0.94 1 0.97 1
Ordering[A] => (B => A) => Ordering[B] 1 1 1 1
Boolean => A => Option[A] 0.42 1 0.25 0.5
sort: Array[A] => 0.59 1 1 1
(List[A], String, String, String) => String 1 1 1 1
parse: String => Float 0.17 0.5 0.28 0.5
ExecutionContext 0.17 1 0 0
List[Future[Float]] => Future[List[Float]] 0 0 0.04 0
(List[A], Int) => A 1 1 1 1

Table 5.3.: Per query comparison between “FEM+All” and “Baseline+All” over 20 ran-
domly chosen queries; If a score di↵ers between the two instantiations the
higher score is highlighted in green
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0.57MAPBaseline 0.69R
10

0.62Baseline+All
0.74

0.61
FEM-Di 0.81

0.70
FEM-De 0.87

0.55
FEM-TF 0.66

0.68
FEM-Fr 0.84

0.70FEM+All
0.85

0 0.2 0.4 0.6 0.8 1

Figure 5.2.: Comparison of MAP and R
10

between some selected instantiations

5.6. Discussion

The evaluation shows that the fingerprint evaluation model can answer information needs
with a generally higher precision and recall than a solution using only textual matching.
Additionally, the detailed analysis of the per query scores in Table 5.3 indicates that
there are certain queries that can only be answered by incorporating subtyping and
implicit conversions and the baseline approach is not su�cient to retrieve all relevant
entities.

Our approach achieves generally better scores when the query type di↵ers from the
types used in the relevant definitions. For example, searching for implementations of
the Ordering type class for Char with the query Ordering[Char] also retrieves the
CharOrdering object which is of a subtype of Ordering[Char]. Also functionality
provided by implicit conversions can be retrieved more e↵ectively. But the incorporation
of type views comes with a certain impact on the precision of simpler queries that mostly
match the type signature of the relevant definitions.

Furthermore, we can conclude that some of the proposed extensions to the fingerprint
evaluation model are crucial to the performance of the search engine. Incorporating
“Distance Boost” and “Type Frequencies” into the weight of a fingerprint term results
in significant improvements.

Disabling “Distance Boosts” decreases the maximum achievable MAP from 0.70
(“FEM+All”) to 0.61 (“FEM-Di”). This result conforms more or less with our ex-
pectations as weighting alternative types with similar scores as the original type in the
query is unlikely to produce feasible results. For example, Int in the query Int =>
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String expands to the alternative types Int, AnyVal and Any. With an equal weighting
for these alternative types, entities of type Any => String are scored equally as entities
of type Int => String. This e↵ect can also be observed on instantiations that do not
incorporate some discrimination between alternative types like “FEM”, “FEM+De” and
“FEM+Fr”.

More surprisingly is the observation that “Type Frequencies” seems to be the most
important weighting factor as disabling this feature decreases MAP to 0.55 (“FEM-TF”),
below the score of the baseline instantiations. One possible explanation is that type
frequencies represents beside the specificity of a type also to some extent the distance
to the original query type. Because of the way how query types are expanded and type
frequencies calculated, an alternative type will always have a higher type frequency than
the according original type.

While the “FEM+All” instantiation with both “Depth Boost” and “Fractions” en-
abled achieves slightly better scores than “FEM-De” and “FEM-Fr”, we can not defi-
nitely conclude that these features contribute to the e↵ectiveness of the system. Espe-
cially disabling “Depth Boost” has only a marginal impact on MAP and even slightly
increased R

10

. This implies that the assumption that the relevance of an atomic type in
a query decreases with its nesting level does not necessarily hold.

5.7. Limitations

There are some flaws in our methodology to evaluate the proposed retrieval model that
may be addressed in future work. First, the system used to measure the baseline is
still relatively close to our retrieval model. A better approach would be to compare
our system to an existing search engine that is also frequently used by developers like
Hoogle. But similar tools for Scala 2.11 that would have allowed for a fair comparison
are not available.

Second, a crucial flaw in our evaluation is that we use the same test collection to
find a good parametrization of the various instantiations and to assess the score of the
optimized instantiation. Best practice would suggest to use di↵erent test collections for
these tasks to ensure that the system is not over-fitted to a particular set of test queries.
Due to the relatively big e↵ort required to come up with a good test collection with
a feasible number of queries (> 50), we decided to not use di↵erent test collections for
parameter optimization and evaluation for now. Especially the current lack of actual
queries of real users makes it di�cult to create a representative collection of queries and
relevant entities.

Third, the test collection is biased towards our retrieval model as we have mainly
focused on type queries that can be answered by our system. For example, functionality
provided through the type class pattern or through higher-kinded types is not yet cov-
ered. As long there is no standardized test collection for API retrieval like TREC used
in the text retrieval community, a biased test setup is probably inevitable.

Altogether, this evaluation still provides some evidence for the potential of our retrieval
model. Especially the insight that we are able to incorporate subtype relations into

89



CHAPTER 5. EVALUATION AND PARAMETRIZATION

queries without drastically decreasing the precision of queries that can be answered
without type views supports the usefulness of this approach.

5.8. Parametrization

Based on the insights of the evaluation, we derived a parametrization for a productive
deployment of the prototype implementation. Beside good evaluation scores, this config-
uration should also provide a reasonable response time to user queries. The configuration
given in Table 5.4 achieves almost identical test scores but decreases the average runtime
of the test queries from 700 ms to 440 ms.
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Productive on on 0.1 0.25 0.1 1 0.1 0.05 0.5 0.69 0.85

Table 5.4.: Final parametrization of the productive environment with test scores

90



6. Conclusion

This final chapter recapitulates the contributions made during this thesis and discusses
how our work can be continued in future projects.

6.1. Accomplishments

We have presented a new approach to type-directed API retrieval that is suitable to index
libraries written in statically-typed, object-oriented languages. The retrieval model is
able to incorporate various concepts common in such programming languages:

• Subtype Polymorphism

• Bounded Parametric Polymorphism

• Definition-site Variance Annotations

• Implicit Conversions (Coercive Subtyping)

Our approach derives an expression from type queries that incorporates both the type’s
structure and the type hierarchy. This expression is then used to match type signatures
of definitions in the API and score them to collect a ranked result set.

Based on the implementation for Scala, we also demonstrated that our approach can
e↵ectively answer information needs. We integrated our retrieval model into the Lucene
search engine and combined it with the text retrieval model to support mixed queries of
textual keywords and types.

The fact, that the model achieved feasible results when applied on the relatively
complex Scala Standard Library, indicates that the approach is suitable to be applied
on a broad range of libraries. Especially the various collection types provided by the
standard library make heavy use of bounded type parameters and multiple inheritance
with deep type hierarchies. Additionally, we proposed further extensions for providing
better support for libraries that heavily rely on the type class pattern.

6.2. Adaption to Other Languages

As already mentioned, we designed the retrieval model not exclusively with the Scala
programming language in mind. This section discusses how the approach can be adapted
to other programming languages.
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6.2.1. C#

From the mainstream programming languages the type system closest to Scala’s is prob-
ably used in C#. Beside bounded parametric and subtype polymorphism with similar
semantics, C# also uses definition-site variance annotations and allows user-defined im-
plicit conversions. Thus, the concepts incorporated in our prototype implementation
should be more or less portable to a implementation for C#. Some language specific
features like delegates and events may require additional transformations to synthetic
types but should not introduce any major di�culties.

6.2.2. Java

Because interoperability with Java has been a major design goal for Scala, extending
our implementation to also support Java libraries should require relatively little e↵ort.
In fact, the Scala compiler can also process Java class files which would allow to reuse a
major part of our infrastructure to extract entities from Java libraries.
One major di↵erence that may a↵ect the e↵ectiveness of the API retrieval system is

that Java exclusively uses use-site variance annotations. One possible approach to over-
come this limitation may be to assume every generic type to be invariant over its type pa-
rameters. Because Java’s collection library defines exclusively mutable data-structures,
which are usually invariant, this simplification may be su�cient to still retrieve good
results.

6.2.3. Go

Go’s type system is an interesting target for our retrieval model as it exclusively uses
structural subtyping with named interfaces. Parametric polymorphism is only supported
on some built-in types. Thus, Go uses interfaces to describe contracts on types but
programmers cannot explicitly state that a certain type implements an interface. Instead,
the compiler checks if a type conforms to an interface at use-site. This requires some
additional e↵ort during feature extractions as subtype relations are not directly available.

6.2.4. C++

With templates, C++ uses a di↵erent approach to provide parametric polymorphism
compared to other mainstream programming languages. Put highly simplified, template
type parameters are implicitly bounded by structural types derived from how the type
parameter is used in the template body. For example, a polymorphic function

template<typename T>

void print(T t) {

std::cout << t.prettify() << std::endl;

}

defines a type parameter T that is bounded by the requirement that there is a member
function prettify() defined on T which returns a value of a type X. Instances of X have
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to be passed to the right hand side of the << operator on instances of basic ostream&

(the type of std::cout). Hence, we require that there is a definition of the << operator
with a signature like

Y operator<<(std::basic_ostream& os, X x);

where Y is another arbitrary type. Because Y is used at the left hand side of the second
application of the << operator, we also require that there must be a further definition

Z operator<<(Y y, std::basic_ostream&(*fn)(std::basic_ostream&));

as the type of std::endl is a function accepting a basic ostream& and returning a
basic ostream&. This second definition of << returns an arbitrary type Z that is not
further constrained. Altogether, even simple examples like the print method can re-
sult in relatively complex constraints on type parameters. Because T is not explicitly
bounded, we have to assume that it is constrained by the most generic type. A similar
function in a language with explicit bounds may just require that T defines a member
prettify() which returns a string. This type is clearly simpler compared to the most
generic possible type derived from the requirements of the implementation.

This approach to polymorphism is extremely flexible as it does not unnecessarily
constrain type parameters. As long as the compiler is able to substitute T with a concrete
type and successfully resolve the applications of the << operator, one can pass anything
that has a member prettify(). This member may also return an int or anything that
can be written to a ostream&.

Because API retrieval model requires that parametric code must have known bounds
on type parameters with clear subtype relations to types that conform to these bounds,
porting the model to C++ will most likely not be a trivial task. Nevertheless, it may
be possible to find a good approximation to this problem. One feasible solution may be
to extract type bounds that are less restrictive than actually required by the template
implementation. For example, print can be indexed with a structural type bound on
T that requires a member prettify() without restricting its return type. As a conse-
quence, every class defining a prettify() member would be considered as a subtype of
this structural type. Such simplified type bounds are probably su�cient to still achieve
good retrieval results.

6.2.5. C++ with Concepts

The upcoming C++17 standard will presumably introduce a new language feature called
“Concepts” [SSR13] [ISO15] that may also simplify the adaption of our API retrieval
model to C++. A concept is a set of syntactical requirements on template parameters.
For example, a simple concept representing the constraints on T for the print method
given in subsection 6.2.4 could be

template<typename T> concept bool Pretty =

requires(T t){
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t.prettify() -> std::string;

};

The concept Pretty accepts every type that defines a member function prettify()

returning a string. As we can see, concepts allow to describe requirements more flexible
than interfaces in other languages. A requirement can be an almost arbitrary expression
like t.prettify() but also prettify(t), t + t or t() with an optional requirement
on the expression’s return type.
Such concepts can now be used to constrain template parameters:

template<Pretty T>

void print(T t) {

std::cout << t.prettify() << std::endl;

}

Instantiating the template print with a T that does not satisfy the Pretty concept is
now objected by the compiler. Hence, prettify() must strictly return a string which is
a more specific requirement than given by the print implementation with an implicitly
constrained type parameter.
Concerning API retrieval, the explicit declaration of type parameter requirements will

increase the accuracy of type bounds. While it was not possible to deduce the expected
return type of prettify() in the implementation of print without concepts, Pretty
now unambiguously defines that it is std::string.

6.3. Limitations and Future Work

Although we believe that the provided implementation is already a good starting point,
further improvements are needed to precisely answer a broad range of information needs.
The most severe limitation is currently, that the retrieval model focuses on finding

definitions that conform to the query type. While this seems feasible from a type theo-
retical point of view, it sometimes requires users to formulate more generic queries than
intuitively reasonable. Especially the rule that only subtypes are matched at covariant
positions is overly restrictive. For example, a common habit is to use List as a sub-
stitute for all types that represent sequences. But querying with Int => List yields
relatively low scores for definitions of types like Int => Iterable.
Concerning the Scala language, the not yet implemented support for implicit param-

eters excludes some important functionality from being easily retrievable. Thus, a user
must know about a type class to retrieve according definitions. While we suggested a pos-
sible solution to this issue with the implicit parameter instantiation in subsection 3.3.3,
we were not yet able to implement and evaluate this approach.
An interesting continuation of this project would also be the integration of the search

engine into an IDE. This would include the design of a user interface for invoking queries
directly from the editor and to develop an algorithm that is able to substitute the query
expression and its parameters with a definition selected by the user.
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B. Installation Guide

This guide describes how the various executables created during this thesis can be com-
piled and executed to reproduce our evaluation results and to use the Scaps web service.
We assume that SBT with a version of 0.13 or higher is installed on the user’s com-
puter. All commands should be executed from the project’s root directory if not stated
otherwise.

B.1. Run the Evaluation

To benchmark the core library with the default configuration against the test collection
defined in evaluation/src/main/resources/, run the following command:

sbt ’evaluation/run-main scaps.evaluation.Benchmark’

The default configuration can be found in core/src/main/resources/

reference.conf. Single configuration parameters can be overwritten by setting
them accordingly in evaluation/src/main/resources/application.conf. For
example, to adjust the length normalization factor, the following line can be added to
the application.conf file:

scaps.query.length-norm-weight = 0.15

The evaluation, as discussed in chapter 5, can be executed by running

sbt ’evaluation/run-main scaps.evaluation.Evaluation’

This command writes all benchmark scores of the instantiated retrieval system to
evaluation/target/results/evaluation-{date}.csv. Additionally, a summary of
the evaluation results will be written to evaluation-stats-{date}.txt in the same
directory.

B.2. Run the Web Service

The simplest way to start an instance of the Scaps web service is by using SBT:

sbt ’webservice/run’
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This will bind the User API and the Control API to the interfaces and ports as
configured in webservice/src/main/resources/application.conf. By default, the
User API (including the Web UI) is bound to all interfaces on the port 8080 and the
Control API is bound to the localhost interface on the port 8081.
For executing the Service in a productive deployment, using SBT is not advised.

Instead, the service should be packaged in a standalone, executable jar:

sbt ’webservice/assembly’

This task merges all library dependencies in a single jar file and writes it to the
webservice/target/scala-2.11 directory. The jar can now be deployed to the pro-
ductive environment and executed by running

java -jar -Dconfig.file=application.conf

{jar-dir}/api-search-webservice-assembly-0.1-SNAPSHOT.jar

Custom configurations, can be set in the application.conf file. This file should at
least set the prod-mode flag of the web service configuration to true:

scaps.webservice.prod-mode = true

An example configuration for a productive deployment is given in webservice/src/

main/resources/application-prod.conf.

B.3. Publish and Install the SBT Plug-in

The SBT plug-in has to be published to a maven repository before it can be used in an
SBT project. To publish all artifacts including the plug-in to the local Ivy repository,
run:

sbt publishLocal

The plug-in can now be used by creating a new SBT project on the same machine
that also hosts the web service and including the following line in the project/

plugins.sbt file:

addSbtPlugin("org.scala-search" % "scaps-sbt" % "0.1-SNAPSHOT")

Additionally, the libraries to index have to be included in the project’s build.sbt file
as a library dependency. For example, to index scalaz, add

libraryDependencies += "org.scalaz" %% "scalaz-core" % "7.1.1"

The Scala Standard Library is a library dependency per default and does not need to
be added in order to be indexed.
If the Scaps service is not exposed at the default ports, the correct hostname can bet

set by using
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scapsHost := "localhost:80"

to set the location of the User API and

scapsControlHost := "localhost:9000"

to set the location of the Control API.
Finally, an index job can be started by running

sbt scapsIndex

An example project, that demonstrates the required project structure is also given in
the demoEnvironment directory.
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C. Motivating Questions from Q&A
Platforms

The following list shows some example questions from the Q&A platform stackover-
flow.com. Such questions have been our initial source of motivation for developing the
Scaps API search engine. Furthermore, these questions have been used to create the test
collection to evaluate the system. Note, that the answers listed below can di↵er from
the accepted answer if a newer release of the Scala Standard Library provided a better
matching function.

1. Title: Scala: join an iterable of strings

Relevant Answer: scala.collection.Iterable.mkString

URL: http://stackoverflow.com/questions/13529512/scala-join-an-iterable-of-
strings

2. Title: Un-optioning an optioned Option

Relevant Answer: scala.Option.flatten

URL: http://stackoverflow.com/questions/5968345/un-optioning-an-optioned-
option

3. Title: How in Scala to find unique items in List

Relevant Answer: scala.collection.immutable.List.distinct

URL: http://stackoverflow.com/questions/1538598/how-in-scala-to-find-unique-
items-in-list

4. Title: How to transform Scala collection of Option[X] to collection of X

Relevant Answer: scala.collection.immutable.List.flatten

URL: http://stackoverflow.com/questions/4730842/how-to-transform-scala-
collection-of-optionx-to-collection-of-x

5. Title: Scala enumeration to int

Relevant Answer: scala.Enumeration.Value.id

URL: http://stackoverflow.com/questions/6632855/scala-enumeration-to-int

6. Title: How to create a list with the same element n-times?

Relevant Answer: scala.collection.immutable.List.fill

VIII



URL: http://stackoverflow.com/questions/12300165/how-to-create-a-list-with-
the-same-element-n-times

7. Title: Hex String to Int,Short and Long in Scala

Relevant Answer: java.lang.Integer.parseInt

URL: http://stackoverflow.com/questions/10763730/hex-string-to-int-short-and-
long-in-scala

8. Title: Scala char to int conversion

Relevant Answer: scala.runtime.RichChar.toDigit

URL: http://stackoverflow.com/questions/16241923/scala-char-to-int-conversion

9. Title: How to return an option when reading a vector

Relevant Answer: scala.collection.immutable.Vector.lift

URL: http://stackoverflow.com/questions/26617611/how-to-return-an-option-
when-reading-a-vector

10. Title: How to convert List[List[Map[String,String]]] to
List[Map[String,String]]

Relevant Answer: scala.collection.immutable.List.flatten

URL: http://stackoverflow.com/questions/11690479/how-to-convert-
listlistmapstring-string-to-listmapstring-string

11. Title: What is an idiomatic Scala way to “remove” one element from an
immutable List?

Relevant Answer: scala.collection.immutable.List.diff

URL: http://stackoverflow.com/questions/5636717/what-is-an-idiomatic-scala-
way-to-remove-one-element-from-an-immutable-list

12. Title: Scala Convert Set to Map

Relevant Answer: scala.collection.Set.zipWithIndex

URL: http://stackoverflow.com/questions/4851418/scala-convert-set-to-map

13. Title: Scala convert Iterable or collection.Seq to collec-
tion.immutable.Seq

Relevant Answer: scala.collection.Seq.to

URL: http://stackoverflow.com/questions/16939611/scala-convert-iterable-or-
collection-seq-to-collection-immutable-seq

14. Title: Convert String to Byte

Relevant Answer: scala.Char.toByte

URL: http://stackoverflow.com/questions/3335821/convert-string-to-byte
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15. Title: Scala create List[Int]

Relevant Answer: scala.collection.immutable.List.range

URL: http://stackoverflow.com/questions/2514438/scala-create-listint
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D. Test Collection

This section lists the complete test collection used to evaluate our retrieval system. The
collection is a map from queries to one or more relevant API entities. Additionally, we
provide the exact Maven identifiers of the indexed libraries consisting of a group ID, an
artifact ID and a version number.

This listing omits the types of the relevant identifiers which are necessary
in some cases to unambiguously identify overloaded definitions. The complete
test collection can be found in the according evaluation/src/main/resources/

{library}-test-collection.conf files.

D.1. Scala Standard Library

Maven ID: org.scala-lang:scala-library:2.11.5

"String => Int" = [
scala.collection.immutable.StringOps#toInt
scala.collection.immutable.WrappedString#toInt

]
"String => Double" = [
scala.collection.immutable.StringOps#toDouble
scala.collection.immutable.WrappedString#toDouble

]
"max: Int" = [
scala.Int.MaxValue

]
"max: (Int, Int) => Int" = [
scala.math.max
scala.runtime.RichInt#max
scala.math.Ordering.Int.max

]
"Ordering[Char]" = [
scala.math.Numeric.CharIsIntegral
scala.math.Ordering.Char
scala.math.Numeric.CharIsIntegral.reverse
scala.math.Ordering.Char.reverse

]
"Ordering[A] => (B => A) => Ordering[B]" = [
scala.math.Ordering#on
scala.math.Ordering.by

]
"Ordering[A] => Ordering[Option[A]]" = [
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scala.math.Ordering.Option
]
"List => java.util.List" = [
scala.collection.JavaConversions.seqAsJavaList
scala.collection.convert.WrapAsJava.seqAsJavaList

]
"java.util.List => collection.Iterable" = [
scala.collection.JavaConversions.asScalaBuffer
scala.collection.convert.WrapAsScala.asScalaBuffer

]
"(Int, Int) => Range" = [
scala.collection.immutable.Range.apply
scala.runtime.RichInt#until
scala.collection.immutable.Range.inclusive
scala.runtime.RichInt#to

]
"exclusive: (Int, Int) => Range" = [
scala.collection.immutable.Range.apply

]
"step: (Range, Int) => Range" = [
scala.collection.immutable.Range#by

]
"(List[Char], String) => String" = [
scala.collection.immutable.List#mkString

]
"(List[A], String) => String" = [
scala.collection.immutable.List#mkString

]
"(List[Char], String, String, String) => String" = [
scala.collection.immutable.List#mkString

]
"(List[A], String, String, String) => String" = [
scala.collection.immutable.List#mkString

]
"(List[A], Int) => A" = [
scala.collection.immutable.List#apply

]
"List[A] => (A => Boolean) => List[A]" = [
scala.collection.immutable.List#filterNot
scala.collection.immutable.List#filter
scala.collection.immutable.List#withFilter
scala.collection.immutable.List#dropWhile
scala.collection.immutable.List#takeWhile

]
"List[A] => Option[A]" = [
scala.collection.immutable.List#lastOption
scala.collection.immutable.List#headOption

]
"Option[Option[Char]] => Option[Char]" = [
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scala.Option#flatten
]
"Option[Option[A]] => Option[A]" = [
scala.Option#flatten

]
"List[Option[Char]] => List[Char]" = [
scala.collection.immutable.List#flatten

]
"List[Option[A]] => List[A]" = [
scala.collection.immutable.List#flatten

]
"List[List[A]] => List[A]" = [
scala.collection.immutable.List#flatten

]
"List[Future[Float]] => Future[List[Float]]" = [
scala.concurrent.Future.sequence

]
"List[Future[A]] => Future[List[A]]" = [
scala.concurrent.Future.sequence

]
"await: Future[T] => _" = [
scala.concurrent.Await.result
scala.concurrent.Await.ready

]
"ExecutionContext" = [
scala.concurrent.ExecutionContext.Implicits.global

]
"sort: Array[Float] => _" = [
scala.util.Sorting.quickSort
scala.util.Sorting.quickSort
scala.util.Sorting.stableSort

]
"sort: (Array[A], Ordering[A]) => _" = [
scala.util.Sorting.quickSort
scala.util.Sorting.stableSort

]
"sort: Array[A] => _" = [
scala.util.Sorting.quickSort
scala.util.Sorting.stableSort
scala.util.Sorting.stableSort

]
"List[Char] => (List[Char], List[Char])" = [
scala.collection.immutable.List#splitAt
scala.collection.immutable.List#span
scala.collection.immutable.List#partition

]
"List[A] => (List[A], List[A])" = [
scala.collection.immutable.List#splitAt
scala.collection.immutable.List#span
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scala.collection.immutable.List#partition
]
"List[A] => Int => TraversableOnce[TraversableOnce[A]]" = [
scala.collection.immutable.List#combinations
scala.collection.immutable.List#sliding
scala.collection.immutable.List#grouped

]
"shuffle: List[Float] => List[Float]" = [
scala.util.Random.shuffle
scala.util.Random#shuffle

]
"shuffle: List[A] => List[A]" = [
scala.util.Random.shuffle
scala.util.Random#shuffle

]
"(collection.Seq[A], collection.Seq[B]) => collection.Seq[(A, B)]" = [
scala.collection.Seq#zip
scala.collection.Seq#zipAll
scala.runtime.Tuple2Zipped.Ops#zipped
scala.runtime.Tuple2Zipped.Ops#invert

]
"random: Double" = [
scala.util.Random.nextDouble
scala.util.Random.nextGaussian
"scala.math.random: scala.Double"

]
"(List[A], Int) => Option[A]" = [
scala.collection.immutable.List#lift

]
"List[A] => B => (B => A => B) => B" = [
scala.collection.immutable.List#foldLeft
scala.collection.immutable.List#foldRight
scala.collection.immutable.List#fold

]

D.2. Scalaz

Maven ID: org.scalaz:scalaz-core 2.11:7.1.1

"Boolean => A => Option[A]" = [
scalaz.Scalaz.option
scalaz.syntax.std.BooleanOps#option

],
"parse: String => Float" = [
scalaz.std.string.parseFloat
scalaz.syntax.std.StringOps#parseFloat

],
"parse: String => Double" = [
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scalaz.std.string.parseDouble
scalaz.syntax.std.StringOps#parseDouble

]

D.3. Scala Refactoring

Maven ID: org.scala-refactoring:org.scala-refactoring.library 2.11:0.6.2

"expand: (Selection, Position) => Selection" = [
scala.tools.refactoring.common.Selections#Selection#expandTo

]
"distance: (Trees#Tree, Position) => _" = [
scala.tools.refactoring.common.PimpedTrees#TreeMethodsForPositions#distanceTo

]
"children: Trees#Tree => List[Trees#Tree]" = [
scala.tools.refactoring.common.PimpedTrees#children

]
"unapply: Trees#Apply => Option" = [
scala.tools.refactoring.common.PimpedTrees#ApplyExtractor.unapply

]
"unapply: Trees#Block => Option" = [
scala.tools.refactoring.common.PimpedTrees#BlockExtractor.unapply

]
"raw source code: String => Trees#Tree" = [
scala.tools.refactoring.common.PimpedTrees#PlainText.Raw.<init>

]
"unit unapply: Trees#Tree => Option" = [
scala.tools.refactoring.common.TreeExtractors#UnitLit.unapply

]
"memoize: (A => B) => (A => B)" = [
scala.tools.refactoring.util.Memoized.on

]
"replace: List => List => List => List" = [
scala.tools.refactoring.transformation.TreeTransformations

#AdditionalListMethods#replaceSequence
]
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E. Project Management

E.1. Tools

Scala IDE 4.0.0
The development environment

Git For version management

Jenkins
Deployed on the project server and used for continuous builds

Redmine
Deployed on the project server and used for issue and time tracking

Multimarkdown
To create this document using LATEX as a backend

TikZ and PGFPlots
To draw the majority of the plots and figures

Astah
To draw the UML diagrams

Sublime Text
For writing this report

E.2. Revision Control

The git repository of this project is located at https://git.hsr.ch/git/scalaAPISearch.
The commit corresponding to the state of the project used to create the evaluation
results as discussed in chapter 5 is tagged with the git tag evaluation. To reproduce
the evaluation results, the repository can be checked out with the following command:

git clone --branch evaluation https://git.hsr.ch/git/scalaAPISearch

E.3. Benchmark Progress

As mentioned in section 4.11, we used the Benchmark executable to continuously evaluate
the current state of the project. The progress of the according test results is illustrated
in Figure E.1.
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Figure E.1.: Progress of the benchmark results collected by the continuous integration
server; each point on the x-axis corresponds to a commit to the git repository
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Figure E.2.: Progress of the benchmark runtime
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From the project start in the calendar week 8 until week 15, the automatic evaluation
of the MAP value was not yet implemented. In week 19, we started to additionally
measure the R

10

value. The project ended with a final commit in week 34.

Because the test collection has been continuously extended, the test scores do not
increase with the progress of the project. Typically, additional test queries resulted in
a decrease of the test scores and a successive adjustment of the retrieval model and the
parametrization in the following commits lead to a recovery of the benchmark results.
Other downward spikes are caused by changes that had accidental e↵ects on the test
score. These errors were detected easily and fixed with the subsequent commit.

In week 23, we also started to collect data about the duration of evaluating the test
collection as shown in Figure E.2. This plot nicely demonstrates how the introduction
of the type frequency cuto↵ parameter in mid of July helped to reduce the query time.

E.4. Time Report

The mandatory workload of this project is 27 ECTS which corresponds to a total of
810 hours. The project duration was initially framed to 21 weeks (not including the one
week easter vacation) which gives an average workload of 38.6 hours per week. The sum
of the actual work hours was 940.
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Figure E.3.: Accumulated hours of planned and actual workload per week
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E.5. Project Schedule

Figure E.4 shows a coarse-grained overview on the project schedule and compares the
planned and actually performed tasks in each week. Note, that we marked only the main
tasks performed in a certain week. Some further comments on the schedule:

• The initially scheduled project duration was 21 weeks (W8 to W29). Because
writing the documentation and evaluating our solution required more e↵ort than
initially anticipated, we extended the project to W33. In W34, we finalized the
report.

• In W15, we decided to direct the project’s focus towards a more refined retrieval
model. This decision also included, that the initially anticipated integration into
Scala IDE has been dropped. Instead, we added the new tasks “SBT Plug-in” and
“Webservice” to the project schedule.

• Altogether, we initially underestimated the complexity of the API retrieval problem
applied to Scala’s type system.

• Also, we did not further pursue additional feature extractors for Java byte code
and Java source files. Extending our approach to other languages before achieving
satisfying results with Scala libraries seemed not reasonable.

• The majority of this report has been written in the last third of the project based
on countless notes and drafts collected during the implementation.

• The retrieval model presented in this report has not been designed up-front before
we started with the implementation. Instead, we had some initial ideas on how
we can address the problem with the Vector Space Model and continuously refined
our approach.
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